679 research outputs found
Atomic Binding Energies From a Modified Thomas-Fermi-Dirac Theory
A quantum correction of the statistical model of the atom was obtained by modifying March and Plaskett's region of integration in the (n/sub r/,l), or quantum-number, plane. Integrations over the plane lead, in the unmodified case, to the Thomas-Fermi density expression and energy equation. Integrations over the modified region are here shown to produce a modified Thomas-Fermi expression for the electron density, and a correction to the kinetic energy. The latter correction shows a similarity to the Weizsacker correction, but is smaller by a slowly changing factor of the order of 10. A modified Thomas-Fermi-Dirac equation was derived by the standard variational procedure. Numerical solutions of the equation were obtained, yielding atomic binding energies in much better agreement with experimental values than those of the unmodified theory. (auth
Clouds, shadows, or twilight? Mayfly nymphs recognise the difference
1. We examined the relative changes in light intensity that initiate night-time locomotor activity changes in nymphs of the mayfly, Stenonema modestum (Heptageniidae). Tests were carried out in a laboratory stream to examine the hypothesis that nymphs increase their locomotion in response to the large and sustained reductions in relative light intensity that take place during twilight but not to short-term daytime light fluctuations or a minimum light intensity threshold. Ambient light intensity was reduced over a range of values representative of evening twilight. Light was reduced over the same range of intensities either continuously or in discrete intervals while at the same time nymph activity on unglazed tile substrata was video recorded.
2. Nymphs increased their locomotor activity during darkness in response to large, sustained relative light decreases, but not in response to short-term, interrupted periods of light decrease. Nymphs did not recognise darkness unless an adequate light stimulus, such as large and sustained relative decrease in light intensity, had taken place.
3. We show that nymphs perceive light change over time and respond only after a lengthy period of accumulation of light stimulus. The response is much lengthier than reported for other aquatic organisms and is highly adaptive to heterogeneous stream environments
Electronic structure investigation of CeB6 by means of soft X-ray scattering
The electronic structure of the heavy fermion compound CeB6 is probed by
resonant inelastic soft X-ray scattering using photon energies across the Ce 3d
and 4d absorption edges. The hybridization between the localized 4f orbitals
and the delocalized valence-band states is studied by identifying the different
spectral contributions from inelastic Raman scattering and normal fluorescence.
Pronounced energy-loss structures are observed below the elastic peak at both
the 3d and 4d thresholds. The origin and character of the inelastic scattering
structures are discussed in terms of charge-transfer excitations in connection
to the dipole allowed transitions with 4f character. Calculations within the
single impurity Anderson model with full multiplet effects are found to yield
consistent spectral functions to the experimental data.Comment: 9 pages, 4 figures, 1 table,
http://link.aps.org/doi/10.1103/PhysRevB.63.07510
Competition between decay and dissociation of core-excited OCS studied by X-ray scattering
We show the first evidence of dissociation during resonant inelastic soft
X-ray scattering. Carbon and oxygen K-shell and sulfur L-shell resonant and
non-resonant X-ray emission spectra were measured using monochromatic
synchrotron radiation for excitation and ionization. After sulfur, L2,3 ->
{\pi}*, {\sigma}* excitation, atomic lines are observed in the emission spectra
as a consequence of competition between de-excitation and dissociation. In
contrast the carbon and oxygen spectra show weaker line shape variations and no
atomic lines. The spectra are compared to results from ab initio calculations
and the discussion of the dissociation paths is based on calculated potential
energy surfaces and atomic transition energies.Comment: 12 pages, 6 pictures, 2 tables,
http://link.aps.org/doi/10.1103/PhysRevA.59.428
A self-interaction corrected pseudopotential scheme for magnetic and strongly-correlated systems
Local-spin-density functional calculations may be affected by severe errors
when applied to the study of magnetic and strongly-correlated materials. Some
of these faults can be traced back to the presence of the spurious
self-interaction in the density functional. Since the application of a fully
self-consistent self-interaction correction is highly demanding even for
moderately large systems, we pursue a strategy of approximating the
self-interaction corrected potential with a non-local, pseudopotential-like
projector, first generated within the isolated atom and then updated during the
self-consistent cycle in the crystal. This scheme, whose implementation is
totally uncomplicated and particularly suited for the pseudopotental formalism,
dramatically improves the LSDA results for a variety of compounds with a
minimal increase of computing cost.Comment: 18 pages, 14 figure
Cosmology at the Millennium
One hundred years ago we did not know how stars generate energy, the age of
the Universe was thought to be only millions of years, and our Milky Way galaxy
was the only galaxy known. Today, we know that we live in an evolving and
expanding Universe comprising billions of galaxies, all held together by dark
matter. With the hot big-bang model, we can trace the evolution of the Universe
from the hot soup of quarks and leptons that existed a fraction of a second
after the beginning to the formation of galaxies a few billion years later, and
finally to the Universe we see today 13 billion years after the big bang, with
its clusters of galaxies, superclusters, voids, and great walls. The attractive
force of gravity acting on tiny primeval inhomogeneities in the distribution of
matter gave rise to all the structure seen today. A paradigm based upon deep
connections between cosmology and elementary particle physics -- inflation +
cold dark matter -- holds the promise of extending our understanding to an even
more fundamental level and much earlier times, as well as shedding light on the
unification of the forces and particles of nature. As we enter the 21st
century, a flood of observations is testing this paradigm.Comment: 44 pages LaTeX with 14 eps figures. To be published in the Centennial
Volume of Reviews of Modern Physic
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
Cross-domain interference costs during concurrent verbal and spatial serial memory tasks are asymmetric
Some evidence suggests that memory for serial order is domain-general. Evidence also points to asymmetries in interference between verbal and visual-spatial tasks. We confirm that concurrently remembering verbal and spatial serial lists provokes substantial interference compared with remembering a single list, but we further investigate the impact of this interference throughout the serial position curve, where asymmetries are indeed apparent. A concurrent verbal order memory task affects spatial memory performance throughout the serial positions of the list, but performing a spatial order task affects memory for the verbal serial list only for early list items; in the verbal task only, the final items are unaffected by a concurrent task. Adding suffixes eliminates this asymmetry, resulting in impairment throughout the list for both tasks. These results suggest that domain-general working memory resources may be supplemented with resources specific to the verbal domain, but perhaps not with equivalent spatial resources
- âŠ