21 research outputs found

    Phase Space Derivation of a Variational Principle for One Dimensional Hamiltonian Systems

    Full text link
    We consider the bifurcation problem u'' + \lambda u = N(u) with two point boundary conditions where N(u) is a general nonlinear term which may also depend on the eigenvalue \lambda. A new derivation of a variational principle for the lowest eigenvalue \lambda is given. This derivation makes use only of simple algebraic inequalities and leads directly to a more explicit expression for the eigenvalue than what had been given previously.Comment: 2 pages, Revtex, no figure

    Eigenvalue Ratios for Sturm-Liouville Operators

    Get PDF
    AbstractIn this paper we prove various optimal bounds for eigenvalue ratios for the Sturm-Liouville equation − [p(x) y′]′ + q(x)y = λw(x)y and certain specializations. Our results primarily concern the regular case with Dirichlet boundary conditions though various extensions and generalizations to other situations are possible. Our results here extend the result λm/λ1 ≤ m2 obtained in a previous paper for the one-dimensional Schrödinger equation, − y″ + q(x)y = λy, on a finite interval with Dirichlet boundary conditions and nonnegative potential (q ≥ 0). In particular, we obtain λm/λ1 ≤ Km2/k, where the constants k, K satisfy 0 < k ≤ p(x) w(x) ≤ K for all x. If q ≡ 0, lower bounds can also be obtained. Our methods involve a slight modification of the Prüfer variable techniques employed in the Schrödinger case. We also examine the consequences of our recent proof of the Payne-Pólya-Weinberger conjecture in the one-dimensional (Sturm-Liouville) setting. Finally, we compare our general bounds to the detailed analyses of Keller and of Mahar and Willner for the special case of the inhomogeneous stretched string

    Minimal speed of fronts of reaction-convection-diffusion equations

    Get PDF
    We study the minimal speed of propagating fronts of convection reaction diffusion equations of the form ut+μϕ(u)ux=uxx+f(u)u_t + \mu \phi(u) u_x = u_{xx} +f(u) for positive reaction terms with f(0>0f'(0 >0. The function ϕ(u)\phi(u) is continuous and vanishes at u=0u=0. A variational principle for the minimal speed of the waves is constructed from which upper and lower bounds are obtained. This permits the a priori assesment of the effect of the convective term on the minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the minimal speed of the fronts. We show that if f(u)/f(0)+μϕ(u)<0f''(u)/\sqrt{f'(0)} + \mu \phi'(u) < 0, then the minimal speed is given by the linear value 2f(0)2 \sqrt{f'(0)}, and the convective term has no effect on the minimal speed. The results are illustrated by applying them to the exactly solvable case ut+μuux=uxx+u(1u)u_t + \mu u u_x = u_{xx} + u (1 -u). Results are also given for the density dependent diffusion case ut+μϕ(u)ux=(D(u)ux)x+f(u)u_t + \mu \phi(u) u_x = (D(u)u_x)_x +f(u).Comment: revised, new results adde

    Variational approach to a class of nonlinear oscillators with several limit cycles

    Full text link
    We study limit cycles of nonlinear oscillators described by the equation x¨+νF(x˙)+x=0\ddot x + \nu F(\dot x) + x =0. Depending on the nonlinearity this equation may exhibit different number of limit cycles. We show that limit cycles correspond to relative extrema of a certain functional. Analytical results in the limits ν>0\nu ->0 and ν>\nu -> \infty are in agreement with previously known criteria. For intermediate ν\nu numerical determination of the limit cycles can be obtained.Comment: 12 pages, 3 figure

    On the validity of the linear speed selection mechanism for fronts of the nonlinear diffusion equation

    Full text link
    We consider the problem of the speed selection mechanism for the one dimensional nonlinear diffusion equation ut=uxx+f(u)u_t = u_{xx} + f(u). It has been rigorously shown by Aronson and Weinberger that for a wide class of functions ff, sufficiently localized initial conditions evolve in time into a monotonic front which propagates with speed cc^* such that 2f(0)c<2sup(f(u)/u)2 \sqrt{f'(0)} \leq c^* < 2 \sqrt{\sup(f(u)/u)}. The lower value cL=2f(0)c_L = 2 \sqrt{f'(0)} is that predicted by the linear marginal stability speed selection mechanism. We derive a new lower bound on the the speed of the selected front, this bound depends on ff and thus enables us to assess the extent to which the linear marginal selection mechanism is valid.Comment: 9 pages, REVTE

    Binding of Polarons and Atoms at Threshold

    Get PDF
    If the polaron coupling constant α\alpha is large enough, bipolarons or multi-polarons will form. When passing through the critical αc\alpha_c from above, does the radius of the system simply get arbitrarily large or does it reach a maximum and then explodes? We prove that it is always the latter. We also prove the analogous statement for the Pekar-Tomasevich (PT) approximation to the energy, in which case there is a solution to the PT equation at αc\alpha_c. Similarly, we show that the same phenomenon occurs for atoms, e.g., helium, at the critical value of the nuclear charge. Our proofs rely only on energy estimates, not on a detailed analysis of the Schr\"odinger equation, and are very general. They use the fact that the Coulomb repulsion decays like 1/r1/r, while `uncertainty principle' localization energies decay more rapidly, as 1/r21/r^2.Comment: 19 page

    Ordering and finite-size effects in the dynamics of one-dimensional transient patterns

    Full text link
    We introduce and analyze a general one-dimensional model for the description of transient patterns which occur in the evolution between two spatially homogeneous states. This phenomenon occurs, for example, during the Freedericksz transition in nematic liquid crystals.The dynamics leads to the emergence of finite domains which are locally periodic and independent of each other. This picture is substantiated by a finite-size scaling law for the structure factor. The mechanism of evolution towards the final homogeneous state is by local roll destruction and associated reduction of local wavenumber. The scaling law breaks down for systems of size comparable to the size of the locally periodic domains. For systems of this size or smaller, an apparent nonlinear selection of a global wavelength holds, giving rise to long lived periodic configurations which do not occur for large systems. We also make explicit the unsuitability of a description of transient pattern dynamics in terms of a few Fourier mode amplitudes, even for small systems with a few linearly unstable modes.Comment: 18 pages (REVTEX) + 10 postscript figures appende

    Propagation and Structure of Planar Streamer Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations. In the present long paper, you find the physics of the model and the interfacial approach further explained. As a first ingredient of this approach, we here analyze planar fronts, their profile and velocity. We encounter a selection problem, recall some knowledge about such problems and apply it to planar streamer fronts. We make analytical predictions on the selected front profile and velocity and confirm them numerically. (abbreviated abstract)Comment: 23 pages, revtex, 14 ps file

    Non-existence and uniqueness results for supercritical semilinear elliptic equations

    Full text link
    Non-existence and uniqueness results are proved for several local and non-local supercritical bifurcation problems involving a semilinear elliptic equation depending on a parameter. The domain is star-shaped but no other symmetry assumption is required. Uniqueness holds when the bifurcation parameter is in a certain range. Our approach can be seen, in some cases, as an extension of non-existence results for non-trivial solutions. It is based on Rellich-Pohozaev type estimates. Semilinear elliptic equations naturally arise in many applications, for instance in astrophysics, hydrodynamics or thermodynamics. We simplify the proof of earlier results by K. Schmitt and R. Schaaf in the so-called local multiplicative case, extend them to the case of a non-local dependence on the bifurcation parameter and to the additive case, both in local and non-local settings.Comment: Annales Henri Poincar\'e (2009) to appea
    corecore