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In this paper we prove various optimal bounds for eigenvalue ratios for the
Sturm-Liouville equation — [ p(x) »"]" + g{.x)» = Aw(x)y and certain specializations.
Our results primarily concern the regular case with Dirichlet boundary conditions
though various extensions and generalizations to other situations are possible. Qur
results here extend the result 4,4, <m® obtained in a previous paper for the
one-dimensional Schrodinger equation, —1” +g(x)y = /), on a finite interval with
Dirichlet boundary conditions and nonnegative potential (¢ = 0). In particular, we
obtain 4,,/4, < Km’/k, where the constants k, K satisfy 0 <k < p(x) w(x) < K for all
x. If g=0. lower bounds can also be obtained. Our methods involve a slight
modification of the Prufer variable techniques employed in the Schrodinger case.
We also examine the consequences of our recent proof of the Payne-Pdlya-
Weinberger conjecture in the one-dimensional (Sturm-Liouville) setting. Finally,
we compare our general bounds to the detailed analyses of Keller and of Mahar
and Willner for the special case of the inhomogeneous stretched string. ¢ 1993

Academic Press, Inc

1. INTRODUCTION AND STATEMENT OF RESULTS

We consider the Sturm-Liouville problem
—[p(x) T + g(x)v=Aw(x)y (1.1)

We are concerned only with the regular case though extensions to other
problems with weaker hypotheses would certainly be possible. In par-
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ticular, we consider (1.1) on a finite interval = (a, f) with continuous
coefficients p, g, and w on Q = [«, B] satisfying b < p(x) < B, c < w(x)<C,
g(x)=0 for all xeQ, where b, B, ¢, and C are positive constants. Also, we
consider only the case of (homogeneous) Dirichlet boundary conditions
here, ie., y(a)=0=yp(f) Undoubtedly, some of our results could be
extended in some form to other boundary conditions or problems with
weaker hypotheses on the coefficient functions but since this is not our
primary objective here we leave these considerations aside. Since we are
concerned only with bounding eigenvalue ratios it is clear that nothing is
lost by always considering problems on the standarized interval 2= (0, 1)
(i.e., a linear change of variable can always accomplish this while leaving
all eigenvalue ratios unchanged).

In this paper we prove several generalizations of our optimal bounds [4]
(see also the earlier papers [2,3])

Al S’ for m=2,3,4,.. (1.2)

and

Ay < {mil}? for m>Iz1 (1.3)

for the Dirichlet eigenvalues of the one-dimensional Schrodinger equation
— 1"+ ¢q(x)y=4yv on a finite interval with ¢ >0, where {x} denotes the
least integer greater than or equal to x. Specifically, we prove

Anli S KmPik  for m=23,4, .. (1.4)

for the Dirichlet eigenvalues of (1.1), where k and K are positive constants
such that 0 <k < p(x) w(x) < K. We also prove the two-sided inequality

km*/KI? < b, i 0, < KmP/kl? (1.5)
for the case where ¢ =0 in addition to the hypotheses in effect for (1.4).
Finally, we give some improvements of (1.4} that follow from our recent
proof of the Payne-Polya~Weinberger conjecture [S, 6], discuss the
relation of our bounds to some results of Keller {11] and of Mahar and
Willner {14] for eigenvalue ratios for the stretched string, and give some
complementary results based on the transformations available through
changes of variables.

2. THE MODIFIED PRUFER TRANSFORMATION

In this section we introduce the modified Priifer transformation that is
the key to our results and present the differential equations for the Priifer
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variables. Our variables here represent a slight further modification of the
Priifer variables we used in [4]. Priifer variables similar to those of [4]
were also introduced by Crandall and Reno in [9], though with a different
purpose in mind.

The Priifer variables r(x), 6(x) that we use here are defined by

y:r(x)sin[a\/zg(.\‘)] (2.1a)
py =a VG‘ r{x) cos[a \/’E B(x)]. (2.1b)

These differ from the standard Priifer variables by the explicit appearance
of factors of a \// In [4] we used this transformation with a = 1. Here we
take a to be an explicit constant coming from properties of the coefficients
functions in (1.1) when we get to the point of making our comparison
argument. The explicit factor \/I in (2.1) is particularly useful in proving
results about eigenvalue ratios. Specifically, it makes the angle variables 6,
and 0, for the first and mth eigenfunctions nearly comparable and this can
be exploited to get tight comparison results for #, and 8, that lead to
optimal bounds for 4,/4, via an argument by contradiction. All this is
developed in greater detail in the next section.

Using Eq. (1.1) and the definitions (2.1) one finds the following differen-
tial equations for r(x) and 6(x):

ro1 ~fa w
== ——— (2 0) 2.2a)
r [\//< ) a\/_]sm a\/_ (

1 1 w ~
9'=__<———,>sin3(a [28)——3
p p a M

and
2a /7 0). (2.2b)

Equation (2.2b) is really the key equation for our comparison method. In
the next section we compare the angle variables 6, and 6,, using the respec-
tive equations (2.2b) with the values of 4 and a specialized appropriately.
This is the basis for our optimal bounds on eigenvalue ratios. More
generally, by this same device we can compare 6, and 6, for arbitrary
indices / and m leading to bounds on the eigenvalue ratio 4,,/4, in the case
where ¢ is identically zero. This case is discussed in Section 4.

3. OpriMAL UPPER BOUNDS FOR EIGENVALUE RATIOS
FOR —(py') +qy=Awy WITH ¢ =0

We denote the eigenvalues of (1.1) by 4,, 4,, 4, .. and note that it is
well known that

O<i|<ir<iz<---

505/103/1-14
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under the stated hypotheses. We let y,, j=1,2,3,.., denote the corre-
sponding sequence of normalized eigenfunctions. Then to each solution y,
we can associate a Priifer angle 0, via the transformation (2.1) if we also
specify the initial condition (we take £ = (0, 1) throughout this section)

#,(0)=0 for j=1,2,3, .. (3.1)

One then has, by standard results for Priifer variables [7],

6,(1)=jnja\/2, for j=1,23,.. (3.2)
and also
0<8,(x)<jn/a/4, for 0<x<l. (3.3)

We begin by proving

THEOREM 3.1.  Consider the regular Sturm-Liouville problem (1.1) with
hypotheses as formulated there (Dirichlet boundary conditions, g 20). Then

/.'nz/)'l < K’nz//k~ (34)

where k and K are positive constants such that k < p(x) w(x) < K. Moreover,
equality occurs if and only if g=0 and pw=k =K.

Proof. Assume we have a problem for which (3.4) is violated. We
compare 6, and 8,,, where for 6, we take the constant ¢ =a, = ﬁ and for
8, we take a=a4a,, = \/E Then from (2.2b) we have

1 1w\ | — g . -
h=-—{-"% ASKiy 0,)———sin*(Ki, 6,) = F(. .
"p (p K)S‘"‘VK" = SRR OD = Fix 00 (35)

and

1

1 1 W . - l] .2 T . -~
Bm =;_ <; - Z) Slnz(\/ k/"m Hm) - E;—_' s (\/’/k/‘m Hm) = Fm(.\', Hm ) (36)

v

We know from (3.3) that O0<  /k+,,0,, <mn for 0 <x<1. We intend to

show that F, (x, 8) = F,(x, 8) for (x, 8) e (0, 1) x (0, ’"ﬂ/\/’/m) since by the
comparison result (see Birkhoff and Rota [7, pp. 26-28]) it will follow that

,(x)<80,(x) for 0<x<l. (3.7)
To see that F,(x, )< F,(x, #) it suffices to observe that

1 ¢
Fi(x, 0)<——
1(x, 0) » K

“1

"

S 1 fensem -~
sin?(/K7, 0) s;—k—‘?— sin2(/ki, 0)<F,(x.0) (3.8)

“m
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where the first and last of these inequalities are simple consequences of
k < p(x)w(x)< K and the middle inequality follows from Proposition 3.2,
which concludes this section. From (3.7) and (3.2) it then follows that

(4

P
Vv K4,

=91(1)<()m(1)=

mn
NS

implying 4, /4, < Km*k, which contradicts our assumption that (3.4) was
violated.

To see that equality in (3.4) occurs if and only if g=0 and k=pw=K
it suffices to observe that if one of these conditions fails to hold then there
will be some subinterval of [0, 1] on which at least one of the inequalities
in (3.8) will become strict. This in turn would force (3.7) to become strict
across the remainder of [0, 1], yielding the desired contradiction. |

As in [4], the optimal upper bounds

balhy < Kj ik for j=2 (3.9)
and

Aol < K{m/l} 2k for m>ix>1 (3.10)

also follow.
We conclude this section with the proposition which established the
middle inequality in (3.8), i.e., the inequality

sin’(\/K7, 0)  sin’(y/ki,, 0)

KR!
K4, K. p G4
for 0<f< rrzn/\/m. This is equivalent to
sin x> S0/ KA (K2, x| (3.12)

KA KE

for 0<x<mn/\/ki,/Ki, and for the sake of contradiction we_have
assumed 4, /4, > Km*/k so that mn,»’\/‘k/‘.,,, /K4, <m and thus mn// k4, /K%,
is a zero of the right-hand side of (3.12) less than =, the first positive zero of
the left-hand side (put differently, by 4,,/4, > Km*/k we have m < \/k4,,/K4,
and thus m< [\/k/',,,,,.w’K/i1 ], where [-] denotes the greatest integer

function). Thus the following proposition is sufficient to establish the
inequality (3.11) and hence (3.8).
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PrROPOSITION 3.2. Let ¢> 1. Then for 0 <8< [c¢] n/c, where [c¢]= the
greatest integer less than or equal to ¢,

sin ¢@

¢

|<sin0. (3.13)

Proof. We first prove the result when ¢ is an integer m > 1. That is, we
prove that

sin m@

- for O0<f<nm. (3.14)
msin 6
To this end, we consider the function
0 0
£(0)=1In |22 ‘ (3.15)
m sin 0

which is well-defined on each of the subintervals (({— 1) n/m, {n/m) for
I=1,2, .., m In addition, f goes to 0 at 0 =0 and n and goes to —o at
each of 8 =/n/m for /=1, 2, ., m— 1. Further,

£(0) ~%l (m*—1)0*+0(0*) at 6=0

with a similar relation holding at 6 = 7.

Since the inequality (3.14) is equivalent to f<0 for 0 <@ <, we will
be done if we can show that f”" <0 on (0, n/m) since this will also take
care of the symmetrically placed interval ((m—1)n/m,n) and on each
of the intermediate subintervals it is clear that msin 6> 12 sin mf,
the first inequality following from s sin n/2m > sin m(n/2m) =1 (implying
msin8>1 for 8e[n/2m, n —n/2m]), which will follow from /" <0 on
(0, m/m).

By using the product representation for sin x, we find

i 2m?0
(B)y=— = < 0 O0<f<m/ 3.16
S(0) 2:1 T for 0<@<m/m (3.16)
l¢gmd
and
<P + m0?
) = Z m(l*n"+m )<0 (317)

= (Pt =m0y

l¢gmZ

for all 0 # In/m with [ an integer which is not a multiple of . This finishes
the proof of (3.14).
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To complete the proof of Proposition 3.2 we fix ¢ and take m=[¢] in
(3.14). Next observe that the graph of

_|sin cx]

¢

is obtained from that of y = |sin mx|/m by a contraction of the xy-plane
by the factor [cl/e=m/c (ie., y=|sin mx|/m goes into }’'=|sin cx'|/c
under (x’, »")=m(x, y)/c). Thus, the graph of y=sin cx|/c is just that
of y =|sin mx|/m shrunk toward the origin by the factor mi/c. Since
y=/|sin mx|;m lies below y =sin x and sin x is concave down on [0, n] (so
that any ray from the origin intersects v =sin x for 0 < x < = at most once)
it is clear that y = |[sin cx|/c also lies below y=sin x for 0 <x < [c] n/c,
thus completing the proof. |

Remarks. Another approach to this proposition is sketched on page
407 of [4]. We give this alternative proof here since it illuminates some of
the ideas that go into the similar analyses involving Bessel functions that
are needed in our proof of the Payne-Polya—Weinberger conjecture. In
fact the proof given here can be viewed as an alternative proof of the

= 1/2 case of our Lemma 3.5 and its consequence, Eq. (3.30), in [6].

4. EIGENVALUE RATIOS FOR STURM-LIOUVILLE EQUATIONS WITH ¢ =0

In this section we derive the more general bounds on eigenvalue ratios
that can be obtained in the absence of the potential function ¢. It turns out
that the argument is now much simpler in that the detailed comparison of
sin x and |sin mx/m| is no longer required and this allows us to find both
upper and lower bounds on eigenvalue ratios. _

For arbitrary indices m and /, with &,,,=\/E and a,= \/K, we have the
equations

1 T ow —
0;=-—( ———]sin’(Ki,0)=G,(x, 0 4.1
/ » (p K)Sm (VK4 8) /(x, 8)) (4.1)
and
1 —
6:”=__(l__> Sln (\/ k/r719 E m Y 8»1) (42)
p \p k

Then we can use the same differential comparison argument that we used
in the previous section to obtain
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THEOREM 4.1.  Consider the regular Sturm-Liouville problem —(py'y =
Awy on a finite interval with Dirichlet boundary conditions and suppose k and
K are positive constants such that k < p(x)w(x)< K for all X in the interval.
Then

F )iy < Km* k12 4.3)

with equality if and only if pw =k =K.

Proof. By (4.1) and (4.2) 1t is clear that
G(x,0)<1p< G, (x, 0) (4.4)

It then follows by the differential comparison argument [7, pp. 26-28 ] that
(taking @ = (0, 1) again)

0,(x)<0,,(x) for 0<x<1 (4.5)

and thus

ln/\/l—(;, =0,(1)<0,(V)=mn/Jki,,

which is equivalent to (4.3). The characterizations of the cases of equality
follow as in our proof of Theorem 3.1 in Section 3 above. |}

By interchanging the roles of m and / in (4.3) we arrive at the two-sided
bounds

km*/KI* < A,,/4, < Km?/kl>. (4.6)

Note that without ¢ we get upper and lower bounds and our upper bound
does not involve {m/l}*, as does the bound (3.10). This fact is true because
we can no longer use ¢ to fashion a double- or multiple-well situation (cf.
p. 410 of [41). However, we caution the reader that p and » can still be
used to fashion multiple-well situations; these require the ratio K/k to be
large and in these cases the bounds in (4.6) become very poor.

5. IMPROVED RATIO RESULTS BASED ON OUR PROOF OF
THE PAYNE-POLYA-WEINBERGER CONJECTURE

Based on our proof of the Payne-Polya~Weinberger conjecture [5, 6]
(see [16, 17] for the original papers of Payne, Polya, and Weinberger) we
proved [6]

Aa BC
1+ B (R R 5.1
/«»] 1 + bC (.]H‘J.,,]/»ln“_ - 1.1 1) ( )
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for the ratio of the first two eigenvalues of the n-dimensional elliptic
eigenvalue problem

B S ::+q(x)u=/:w(x)u (5.2)

iij=1 "'

on a bounded domain £ with Dirichlet boundary conditions imposed on
u. Here [a;] is taken as a symmetric matrix with 0 <b < [a,] < B (in the
sense of quadratlc forms), ¢ =0, and O < c < w< C, where b, B ¢, and C are
constants. In (5.1), the notation j, , represents the kth positive zero of the
Bessel function J,(x).

For us here, n=1 so we need only the facts j,, ,=n and j_ ., =mn/2.
We then have

Ay/A <14 3BC/be, (5.3)

but with a little more work we can do better. In particular, we obtain

THEOREM 5.1.  Consider the regular Sturm-Liouville problem (1.1) with
Dirichlet boundary conditions and q 2 0. Let k, K be positive constants such
that k < p(x) w(x) < K. Then the first two eigenvalues of this problem satisfy

Jy/iy <14 3K/k (5.4)

with equality if and only if k=K and ¢ =0.
Remark. Obviously, k = be, K= BC will work here and give back (5.3).
The point, though, is that we can do better.

Proof. To obtain the improved result we simply make the change of
variable

X dS
r= jﬂ o (5.5)

Since p is positive and bounded away from 0 and 1/p is integrable it is clear
that this leads to the new regular Sturm-Liouville problem

— 3+ p(x(1)) g(x(1)y = Ap(x(1)) w(x (1)), (5.6)

again with Dirichlet boundary conditions. By applying our previous result
(inequality (5.3)) to this equation we immediately obtain (5.4) since we
have k& < p(x(t)) w(x(1)) < K for all ¢ in the interval under consideration.

The case of equality follows from the fact that equality in (5.3) holds if
and only if B=b=p, ¢g=0, and C=c=w.
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Remarks. (1) The transformation (5.5) “explains” why only p(x) w(x)
matters in our bounds. This fact also is evident from (2.2b) though our new
viewpoint makes it more transparent. We could, in fact, have developed
our entire argument in Section 2 with one of p or w identically one and
then passed back to the general case by using the transformation (5.5). Use
of the transformation (5.5) is old, being used to good effect by Leighton in
[12, pp. 2272287, for example.

(2) The case of equality where p(x) w(x)=constant and ¢(x)=0 for
all x has some interesting sidelights. In this case, of course, one can give the
eigenfunctions of (5.6), and hence also of (1.1), explicitly. In particular, one
finds (neglecting the normalization constant)

. {rh dx . ods [P odx
Vo, =sin | mnat | J —— | =sin | mn J —_— j .
{2 p(x) x pls)i Yy plx)

Again, some discussion of such problems may be found in [12, p. 218,
problems 9, 10]. Also, McLaughlin was able to make use of an extension
of this idea to obtain comparison results and inequalities for individual
eigenvalues of Sturm-Liouville problems in [15].

(3) It should be noted that the result of this section improves only
upon our earlier upper bound for 4,/4,. Eigenvalue ratios such as 4,,/4,
for m =3 do not seem to be amenable to the approach used in our proof
of the Payne~-Polya—Weinberger conjecture. However, one can push (5.4)
to apply to the ratio 4,,,/4,,. That is, we have

;'2'71//}'m< 1 +3K//k (57)

for m=1, 2,3, ..., which improves upon the j=2 case of (3.9) above. This
follows as in our proof of Proposition 3.2 in {4, p. 409], using the fact that
the zeros of the solution y(x;4) to (1.1) satisfying initial conditions
(2 2)y=0, y'(a; A)=1 are decreasing functions of 4 (see [7, Theorem 4,
p- 2707 or [8, pp.- 454-4551]). Similar arguments are to be found in [14].

6. THE STRETCHED STRING: COMPARISON WITH THE RATIO RESULTS OF
KELLER AND OF MAHAR AND WILLNER

The papers of Keller [11] and Mahar and Wilner [14] (see also
[18,19] and the paper of Gentry and Banks [10]) solve the problem of
minimizing and maximizing 4,/4, and other eigenvalue ratios for the
stretched string

—y"=Aw(x)y (6.1)
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on a finite interval with Dirichlet boundary conditions and positive weight
function w bounded by 0 < ¢ <w(x)< C (in our notation). We set y = ¢/C
([11]) and [14] use x for this variable) and consider the full range
O<y<l.

Our best bounds developed above for the eigenvalue ratio 4,/4, for (6.1)
are

max{l, 4y} <4/, <1 +3/ <4y (6.2)

These bounds are depicted in Fig. 1.

The optimal bounds of {11, 14] (which were computed numerically in
those papers) are also sketched in Fig. 1. These have the asymptotic form
near 7 =0 of

) g
;4(*,')§minf.~2~l+—~,v“““+ (6.3)
oAy n
(Keller [11, p.491]) and
/...7 2
v(y) = max =~ +0(y ' (6.4)

< o172
¢ 2 2,"

FiG. 1. Graph showing upper and lower bounds from (6.2) and the optimal upper and
lower bounds v(y) and u(y) as computed by Mahar and Willner [14] and by Keller [11].
respectively.
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(Mahar and Willner [14, p. 520]). Here C. denotes the class of weight
functions for which bounds ¢ and C exist with 0 <c<w(x)< Cand y=¢/C
(obviously ¢/C =y is enough).

While it is clear that the exact bounds of Keller and of Mahar and
Willner are better than ours, especially for y near 0, it is interesting that
our bounds give a reasonable qualitative picture of the situation.
Moreover, our bounds are explicit and can be determined with a minimum
of effort for any given problem.

7. RATIO RESULTS FOLLOWING FROM TRANSFORMATION THEORY

If the coefficients in (1.1} are sufficiently differentiable then the results we
established in the preceding sections can be combined with changes of
variables to produce other interesting results. Specifically, the change of
independent and dependent variables defined by (cf. Courant and Hilbert,
Vol. T [8.p.292])

N 12
a_ <i> (7.1)
dx P
and
yx)=ulx) (1), (7.2)
where
u(xy=[plx)wix)] (7.3)
transforms Eq. (1.1) into the Schrédinger normal form
—5+[2+(pw) ]4d~,(p11')]4:|:=).2. (7.4)
w dr-

This is a regular Sturm-Liouville problem since (1.1) was assumed to be.
Also, by (7.2), Dirichlet boundary conditions remain in effect.

The second part of the potential in (7.4) can also be written in terms of
derivatives with respect to x. We give two particularly useful forms.

d? d? 1 d?
L4 AA ey 34 TR TR 12
(pw) 22 ) (w/p) R (w/p) TP gar
1 % ! 2
=3¥ Sapiis ——;xz (p¥*wi) -3 2p c;‘cz w12 (7.5)

In particular these equations show the following:
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1. If (d%/dx?)(w~"*)<0 or equivalently (d%/dr*)(w'*)=0 then the
Dirichlet eigenvalues of the equation —y" = /iwy satisfy 4, /4, <m” for
m=2,34,.. and also 4,/4,< {m/l}* for m>1>1.

2. If (d¥dx*)(p**)=0 or equivalently (d%/di*)(p"*)=0 then the
ratios of the Dirichlet eigenvalues of the equation —(py’) = Ay satisfy the
same inequalities as those in 1.

3. The conclusions in items 1 and 2 also hold when a potential ¢ =0
is included. More generally, ¢ =0 and (d?/dt*)(pw)"* =0 yield the same
bounds for the ratios of the Dirichlet eigenvalues of (1.1) as those stated in
item 1 above.

Finally, we note that we can use the transformation defined by (7.1) and
(7.2) to pass from an equation of the form (7.4) to one of the form (1.1).
One particular consequence is that if M(¢) is such that

n -~

a-M _
T +(g+u)M=0 (7.6)

and M(t)>0 for all £'s in a closed interval then the equation
—Ef=(i+pu): (7.7)

is equivalent to
— (MY +qy=4y (7.8)

(here primes denote differentiation with respect to x) if the transformation
that we use is defined by

dx o
<=M (7.9)

and (7.2) with y(x)= z(1)/ M(1). We could even let represent an arbitrary
function here.

Another consequence (following Magnus and Winkler [13, pp. 51-52]
but correcting some misprints) is that if M(z) satisfies

2

d*M ,
T+ M=0 (7.10)

and is positive in some interval of interest then the equation
—i-Q)z=14z {7.11)
1s equivalent to

— v = iM%y (7.12)



218 ASHBAUGH AND BENGURIA

under the transformation defined by

dx \
—=M : 7.13
a1 (1) ( )

with v(x)=z(r)/M(r). Under our assumptions here the original finite
interval will transform into a new finite interval on which the transformed
equation is again regular.

Additionally, much general information concerning the transformation
theory of general differential operators is to be found in the paper of
Ahlbrandt, Hinton, and Lewis [1].

8. CONCLUDING REMARKS

It should be noted that all our results concerning the case ¢ 2> 0 could be
extended to cases where ¢ is bounded below by a constant times w. One
need only shift the eigenvalues by this constant and incorporate the
constant shift into the potential. That is, if g(x) > Aw(x) we regroup (1.1)
as

—(py) +(g—Aw)yr=(i—A)wy (8.1)

and proceed as before. All our bounds for the case ¢ > 0 will now apply but
with 2’s replaced by (4 — A)s. This comment applies as well to the case
where 4 >0 since in that case, even though our bounds already apply as
given, one will get better bounds by performing the shift by A. In fact, for
optimal results one should first shift by

A= mig Lg(x)/w{x)].

The results presented in this paper could probably be extended to
singular problems where the product p(x)w(x) is still nice in the sense that
there are constants K>k >0 such that & <p(x)w(x)< K. One point of
departure for such an extension would be the transformation (5.5) and the
resulting equation (5.6).
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