801 research outputs found

    The Strong CP Problem and Axions

    Get PDF
    I describe how the QCD vacuum structure, necessary to resolve the U(1)AU(1)_A problem, predicts the presence of a P, T and CP violating term proportional to the vacuum angle ξˉ\bar{\theta}. To agree with experimental bounds, however, this parameter must be very small (Ξˉ≀10−9(\bar{\theta} \leq 10^{-9}). After briefly discussing some possible other solutions to this, so-called, strong CP problem, I concentrate on the chiral solution proposed by Peccei and Quinn which has associated with it a light pseudoscalar particle, the axion. I discuss in detail the properties and dynamics of axions, focusing particularly on invisible axion models where axions are very light, very weakly coupled and very long-lived. Astrophysical and cosmological bounds on invisible axions are also briefly touched upon.Comment: 14 pages, to appear in the Lecture Notes in Physics volume on Axions, (Springer Verlag

    Yang-Mills Solutions on Euclidean Schwarzschild Space

    Get PDF
    We show that the apparently periodic Charap-Duff Yang-Mills `instantons' in time-compactified Euclidean Schwarzschild space are actually time independent. For these solutions, the Yang-Mills potential is constant along the time direction (no barrier) and therefore, there is no tunneling. We also demonstrate that the solutions found to date are three dimensional monopoles and dyons. We conjecture that there are no time-dependent solutions in the Euclidean Schwarzschild background.Comment: 12 pages, references added, version to appear in PR

    B Production Asymmetries in Perturbative QCD

    Get PDF
    This paper explores a new mechanism for B production in which a b quark combines with a light parton from the hard-scattering process before hadronizing into the B hadron. This recombination mechanism can be calculated within perturbative QCD up to a few nonperturbative constants. Though suppressed at large transverse momentum by a factor Lambda_QCD m_b/p_t^2 relative to b quark fragmentation production, it can be important at large rapidities. A signature for this heavy-quark recombination mechanism in proton-antiproton colliders is the presence of rapidity asymmetries in B cross sections. Given reasonable assumptions about the size of nonperturbative parameters entering the calculation, we find that the asymmetries are only significant for rapidities larger than those currently probed by collider experiments.Comment: 17 pages, LaTeX, 4 ps figures, tightenlines, sections added, final version accepted for publication in Phys. Rev.

    Theta angle versus CP violation in the leptonic sector

    Get PDF
    Assuming that the axion mechanism of solving the strong CP problem does not exist and the vanishing of theta at tree level is achieved by some model-building means, we study the naturalness of having large CP-violating sources in the leptonic sector. We consider the radiative mechanisms which transfer a possibly large CP-violating phase in the leptonic sector to the theta parameter. It is found that large theta cannot be induced in the models with one Higgs doublet as at least three loops are required in this case. In the models with two or more Higgs doublets the dominant source of theta is the phases in the scalar potential, induced by CP violation in leptonic sector. Thus, in the MSSM framework the imaginary part of the trilinear soft-breaking parameter A_l generates the corrections to the theta angle already at one loop. These corrections are large, excluding the possibility of large phases, unless the universality in the slepton sector is strongly violated.Comment: 5 pages, 2 figure

    Discrete symmetries, invisible axion and lepton number symmetry in an economic 3-3-1 model

    Full text link
    We show that Peccei-Quinn and lepton number symmetries can be a natural outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z_11 x Z_2 symmetry. This symmetry is suitably accommodated in this model when we augmented its spectrum by including merely one singlet scalar field. We work out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study the phenomenological consequences. The main result of this work is that the solution to the strong CP problem can be implemented in a natural way, implying an invisible axion phenomenologically unconstrained, free of domain wall formation and constituting a good candidate for the cold dark matter.Comment: 17 pages, Revtex

    Reflections on the Strong CP Problem

    Get PDF
    I discuss how anomalies affect classical symmetries and how, in turn, the non-trivial nature of the gauge theory vacuum makes these quantum corrections troublesome. Although no solution seems in sight for the cosmological constant problem, I examine three possible approaches to the strong CP problem involving vacuum dynamics, an additional chiral symmetry, and the possibility of spontaneous CP or P breaking. All of these "solutions" have their own problems and suggest that, at a deep level, we do not understand the nature of CP violation. Nevertheless, it remains extremely important to search for experimental signals predicted by these theoretical "solutions", like invisible axions.Comment: 11 pages, Latex fil

    STATIC FOUR-DIMENSIONAL ABELIAN BLACK HOLES IN KALUZA-KLEIN THEORY

    Full text link
    Static, four-dimensional (4-d) black holes (BH's) in (4+n4+n)-d Kaluza-Klein (KK) theory with Abelian isometry and diagonal internal metric have at most one electric (QQ) and one magnetic (PP) charges, which can either come from the same U(1)U(1)-gauge field (corresponding to BH's in effective 5-d KK theory) or from different ones (corresponding to BH's with U(1)M×U(1)EU(1)_M\times U(1)_E isometry of an effective 6-d KK theory). In the latter case, explicit non-extreme solutions have the global space-time of Schwarzschild BH's, finite temperature, and non-zero entropy. In the extreme (supersymmetric) limit the singularity becomes null, the temperature saturates the upper bound TH=1/4Ï€âˆŁQP∣T_H=1/4\pi\sqrt{|QP|}, and entropy is zero. A class of KK BH's with constrained charge configurations, exhibiting a continuous electric-magnetic duality, are generated by global SO(n)SO(n) transformations on the above classes of the solutions.Comment: 11 pages, 2 Postscript figures. uses RevTeX and psfig.sty (for figs) paper and figs also at ftp://dept.physics.upenn.edu/pub/Cvetic/UPR-645-

    Direct CP violation and the ΔI=1/2 rule in K→ππ decay from the standard model

    Get PDF
    We present a lattice QCD calculation of the ΔI=1/2, K→ππ decay amplitude A0 and Ï”â€Č, the measure of direct CP violation in K→ππ decay, improving our 2015 calculation [1] of these quantities. Both calculations were performed with physical kinematics on a 323×64 lattice with an inverse lattice spacing of a-1=1.3784(68)  GeV. However, the current calculation includes nearly 4 times the statistics and numerous technical improvements allowing us to more reliably isolate the ππ ground state and more accurately relate the lattice operators to those defined in the standard model. We find Re(A0)=2.99(0.32)(0.59)×10-7  GeV and Im(A0)=-6.98(0.62)(1.44)×10-11  GeV, where the errors are statistical and systematic, respectively. The former agrees well with the experimental result Re(A0)=3.3201(18)×10-7  GeV. These results for A0 can be combined with our earlier lattice calculation of A2 [2] to obtain Re(Ï”â€Č/Ï”)=21.7(2.6)(6.2)(5.0)×10-4, where the third error represents omitted isospin breaking effects, and Re(A0)/Re(A2)=19.9(2.3)(4.4). The first agrees well with the experimental result of Re(Ï”â€Č/Ï”)=16.6(2.3)×10-4. A comparison of the second with the observed ratio Re(A0)/Re(A2)=22.45(6), demonstrates the standard model origin of this “ΔI=1/2 rule” enhancement.We present a lattice QCD calculation of the ΔI=1/2\Delta I=1/2, K→ππK\to\pi\pi decay amplitude A0A_0 and Δâ€Č\varepsilon', the measure of direct CP-violation in K→ππK\to\pi\pi decay, improving our 2015 calculation of these quantities. Both calculations were performed with physical kinematics on a 323×6432^3\times 64 lattice with an inverse lattice spacing of a−1=1.3784(68)a^{-1}=1.3784(68) GeV. However, the current calculation includes nearly four times the statistics and numerous technical improvements allowing us to more reliably isolate the ππ\pi\pi ground-state and more accurately relate the lattice operators to those defined in the Standard Model. We find Re(A0)=2.99(0.32)(0.59)×10−7{\rm Re}(A_0)=2.99(0.32)(0.59)\times 10^{-7} GeV and Im(A0)=−6.98(0.62)(1.44)×10−11{\rm Im}(A_0)=-6.98(0.62)(1.44)\times 10^{-11} GeV, where the errors are statistical and systematic, respectively. The former agrees well with the experimental result Re(A0)=3.3201(18)×10−7{\rm Re}(A_0)=3.3201(18)\times 10^{-7} GeV. These results for A0A_0 can be combined with our earlier lattice calculation of A2A_2 to obtain Re(Δâ€Č/Δ)=21.7(2.6)(6.2)(5.0)×10−4{\rm Re}(\varepsilon'/\varepsilon)=21.7(2.6)(6.2)(5.0) \times 10^{-4}, where the third error represents omitted isospin breaking effects, and Re(A0)(A_0)/Re(A2)=19.9(2.3)(4.4)(A_2) = 19.9(2.3)(4.4). The first agrees well with the experimental result of Re(Δâ€Č/Δ)=16.6(2.3)×10−4{\rm Re}(\varepsilon'/\varepsilon)=16.6(2.3)\times 10^{-4}. A comparison of the second with the observed ratio Re(A0)/(A_0)/Re(A2)=22.45(6)(A_2) = 22.45(6), demonstrates the Standard Model origin of this "ΔI=1/2\Delta I = 1/2 rule" enhancement

    A Massive Renormalizable Abelian Gauge Theory in 2+1 Dimensions

    Get PDF
    The standard formulation of a massive Abelian vector field in 2+12+1 dimensions involves a Maxwell kinetic term plus a Chern-Simons mass term; in its place we consider a Chern-Simons kinetic term plus a Stuekelberg mass term. In this latter model, we still have a massive vector field, but now the interaction with a charged spinor field is renormalizable (as opposed to super renormalizable). By choosing an appropriate gauge fixing term, the Stuekelberg auxiliary scalar field decouples from the vector field. The one-loop spinor self energy is computed using operator regularization, a technique which respects the three dimensional character of the antisymmetric tensor ϔαÎČÎł\epsilon_{\alpha\beta\gamma}. This method is used to evaluate the vector self energy to two-loop order; it is found to vanish showing that the beta function is zero to two-loop order. The canonical structure of the model is examined using the Dirac constraint formalism.Comment: LaTeX, 17 pages, expanded reference list and discussion of relationship to previous wor

    Out-of-equilibrium evolution of scalar fields in FRW cosmology: renormalization and numerical simulations

    Get PDF
    We present a renormalized computational framework for the evolution of a self-interacting scalar field (inflaton) and its quantum fluctuations in an FRW background geometry. We include a coupling of the field to the Ricci scalar with a general coupling parameter Ο\xi. We take into account the classical and quantum back reactions, i.e., we consider the the dynamical evolution of the cosmic scale factor. We perform, in the one-loop and in the large-N approximation, the renormalization of the equation of motion for the inflaton field, and of its energy momentum tensor. Our formalism is based on a perturbative expansion for the mode functions, and uses dimensional regularization. The renormalization procedure is manifestly covariant and the counter terms are independent of the initial state. Some shortcomings in the renormalization of the energy-momentum tensor in an earlier publication are corrected. We avoid the occurence of initial singularities by constructing a suitable class of initial states. The formalism is implemented numerically and we present some results for the evolution in the post-inflationary preheating era.Comment: 44 pages, uses latexsym, 6 pages with 11 figures in a .ps fil
    • 

    corecore