198 research outputs found

    Stability of the lattice formed in first-order phase transitions to matter containing strangeness in protoneutron stars

    Full text link
    Well into the deleptonization phase of a core collapse supernova, a first-order phase transition to matter with macroscopic strangeness content is assumed to occur and lead to a structured lattice defined by negatively charged strange droplets. The lattice is shown to crystallize for expected droplet charges and separations at temperatures typically obtained during the protoneutronstar evolution. The melting curve of the lattice for small spherical droplets is presented. The one-component plasma model proves to be an adequate description for the lattice in its solid phase with deformation modes freezing out around the melting temperature. The mechanical stability against shear stresses is such that velocities predicted for convective phenomena and differential rotation during the Kelvin-Helmholtz cooling phase might prevent the crystallization of the phase transition lattice. A solid lattice might be fractured by transient convection, which could result in anisotropic neutrino transport. The melting curve of the lattice is relevant for the mechanical evolution of the protoneutronstar and therefore should be included in future hydrodynamics simulations.Comment: accepted for publication in Physical Review

    Microstructural and Chemical Rejuvenation of a Ni-Based Superalloy

    Get PDF
    This is an open access article published by Springer and distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), http://creativecommons.org/licenses/by/4.0/The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime morphology, size and distribution after high temperature degradation and subsequent rejuvenation heat treatments has been examined using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM). In this paper it is shown that there are significant differences in the size of the ‘channels’ between gamma prime particles, the degree of rafting and the size of tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical analysis has been carried out to compare rejuvenated and pre-service samples after the same subsequent degradation procedure. The results indicate that although the microstructure of pre-service and rejuvenated samples are similar, chemical differences are more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements was not completely eliminated through the applied rejuvenation heat treatment. A number of modified rejuvenation heat treatment trials were carried out to reduce the chemical segregation prior to creep testing. The creep test results suggest that chemical segregation has an immeasurable influence on the short-term mechanical properties under the test conditions used here, indicating that further work is required to fully understand the suitability of specific rejuvenation heat treatments and their role in the extension of component life in power plant applications

    Viability of Noether symmetry of F(R) theory of gravity

    Full text link
    Canonization of F(R) theory of gravity to explore Noether symmetry is performed treating R - 6(\frac{\ddot a}{a} + \frac{\dot a^2}{a^2} + \frac{k}{a^2}) = 0 as a constraint of the theory in Robertson-Walker space-time, which implies that R is taken as an auxiliary variable. Although it yields correct field equations, Noether symmetry does not allow linear term in the action, and as such does not produce a viable cosmological model. Here, we show that this technique of exploring Noether symmetry does not allow even a non-linear form of F(R), if the configuration space is enlarged by including a scalar field in addition, or taking anisotropic models into account. Surprisingly enough, it does not reproduce the symmetry that already exists in the literature (A. K. Sanyal, B. Modak, C. Rubano and E. Piedipalumbo, Gen.Relativ.Grav.37, 407 (2005), arXiv:astro-ph/0310610) for scalar tensor theory of gravity in the presence of R^2 term. Thus, R can not be treated as an auxiliary variable and hence Noether symmetry of arbitrary form of F(R) theory of gravity remains obscure. However, there exists in general, a conserved current for F(R) theory of gravity in the presence of a non-minimally coupled scalar-tensor theory (A. K. Sanyal, Phys.Lett.B624, 81 (2005), arXiv:hep-th/0504021 and Mod.Phys.Lett.A25, 2667 (2010), arXiv:0910.2385 [astro-ph.CO]). Here, we briefly expatiate the non-Noether conserved current and cite an example to reveal its importance in finding cosmological solution for such an action, taking F(R) \propto R^{3/2}.Comment: 16 pages, 1 figure. appears in Int J Theoretical Phys (2012

    Influence of Heat Treatment on Defect Structures in Single-Crystalline Blade Roots Studied by X-ray Topography and Positron Annihilation Lifetime Spectroscopy

    Get PDF
    Single-crystalline superalloy CMSX-4 is studied in the as-cast state and after heat treatment, with material being taken from turbine blade castings. The effect of the heat treatment on the defect structure of the root area near the selector/root connection is emphasized. Multiscale analysis is performed to correlate results obtained by X-ray topography and positron annihilation lifetime spectroscopy (PALS). Electron microscopy observations were also carried out to characterize the inhomogeneity in dendritic structure. The X-ray topography was used to compare defects of the misorientation nature, occurring in as-cast and treated states. The type and concentration of defects before and after heat treatment in different root areas were determined using the PALS method, which enables voids, mono-vacancies, and dislocations to be taken into account. In this way, differences in the concentration of defects caused by heat treatment are rationalized

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    Get PDF
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.Peer reviewe

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    Charge Transfer Reactions

    Full text link

    The epitaxy of gold

    Full text link
    • …
    corecore