1,348 research outputs found

    A Study on Phase-Changing Materials for Controllable Stiffness in Robotic Joints

    Get PDF
    This paper studies the viability of using a class of phase-changing materials for the design of controlled variable stiffness robotic joints which enable the design of robots that can operate in confined spaces. In such environments, robots need to be able to navigate in proximity or while in contact with their environment to reach one or more manipulated target. Joints with controllable stiffness can substantially enhance functionality of this class of robots where relatively higher joint stiffness is required to support the robot weight against gravity and low stiffness is desired when operating in complex or delicate environments. The research work presented in this paper focuses on examining thermorheological fluids (TRF) to design and manufacture thermally controlled variable stiffness joints. Two phase-changing materials are considered in the study: low-melting-point solder and hot-melt adhesive. Both materials are embedded in a custom designed joint fabricated using 3D printing and silicone casting. Joint stiffness was investigated with both materials and reported here. The results shows that the proposed variable stiffness joints with TRF achieve wide ranges of load-deflection ratio varying between 0.05 N/mm (when thermally activated) to about 10 N/mm (in bonding state). On average, the joint can withstand 20 times its total weight when in the bonding state. Design challenges and durability of TRF-based joints are discussed

    Quantized Thermal Transport in the Fractional Quantum Hall Effect

    Full text link
    We analyze thermal transport in the fractional quantum Hall effect (FQHE), employing a Luttinger liquid model of edge states. Impurity mediated inter-channel scattering events are incorporated in a hydrodynamic description of heat and charge transport. The thermal Hall conductance, KHK_H, is shown to provide a new and universal characterization of the FQHE state, and reveals non-trivial information about the edge structure. The Lorenz ratio between thermal and electrical Hall conductances {\it violates} the free-electron Wiedemann-Franz law, and for some fractional states is predicted to be {\it negative}. We argue that thermal transport may provide a unique way to detect the presence of the elusive upstream propagating modes, predicted for fractions such as ν=2/3\nu=2/3 and ν=3/5\nu=3/5.Comment: 6 pages REVTeX, 2 postscript figures (uuencoded and compressed

    Spin Structure of the Pion in a Light-Cone Representation

    Full text link
    The spin structure of the pion is discussed by transforming the wave function for the pion in the naive quark model into a light-cone representation. It is shown that there are higher helicity (λ1+λ2=±1\lambda_{1}+\lambda_{2}=\pm1) states in the full light-cone wave function for the pion besides the ordinary helicity (λ1+λ2=0\lambda_{1}+\lambda_{2}=0) component wave functions as a consequence from the Melosh rotation relating spin states in light-front dynamics and those in instant-form dynamics. Some low energy properties of the pion, such as the electromagnetic form factor, the charged mean square radius, and the weak decay constant, could be interrelated in this representation with reasonable parameters.Comment: 15 Latex pages, 2 figures upon reques

    Electrochemical capacitance of a leaky nano-capacitor

    Get PDF
    We report a detailed theoretical investigation on electrochemical capacitance of a nanoscale capacitor where there is a DC coupling between the two conductors. For this ``leaky'' quantum capacitor, we have derived general analytic expressions of the linear and second order nonlinear electrochemical capacitance within a first principles quantum theory in the discrete potential approximation. Linear and nonlinear capacitance coefficients are also derived in a self-consistent manner without the latter approximation and the self-consistent analysis is suitable for numerical calculations. At linear order, the full quantum formula improves the semiclassical analysis in the tunneling regime. At nonlinear order which has not been studied before for leaky capacitors, the nonlinear capacitance and nonlinear nonequilibrium charge show interesting behavior. Our theory allows the investigation of crossover of capacitance from a full quantum to classical regimes as the distance between the two conductors is changed

    Density functional theory calculations of the carbon ELNES of small diameter armchair and zigzag nanotubes: core-hole, curvature and momentum transfer orientation effects

    Full text link
    We perform density functional theory calculations on a series of armchair and zigzag nanotubes of diameters less than 1nm using the all-electron Full-Potential(-Linearised)-Augmented-Plane-Wave (FPLAPW) method. Emphasis is laid on the effects of curvature, the electron beam orientation and the inclusion of the core-hole on the carbon electron energy loss K-edge. The electron energy loss near-edge spectra of all the studied tubes show strong curvature effects compared to that of flat graphene. The curvature induced πσ\pi-\sigma hybridisation is shown to have a more drastic effect on the electronic properties of zigzag tubes than on those of armchair tubes. We show that the core-hole effect must be accounted for in order to correctly reproduce electron energy loss measurements. We also find that, the energy loss near edge spectra of these carbon systems are dominantly dipole selected and that they can be expressed simply as a proportionality with the local momentum projected density of states, thus portraying the weak energy dependence of the transition matrix elements. Compared to graphite, the ELNES of carbon nanotubes show a reduced anisotropy.Comment: 25 pages, 15 figures, revtex4 submitted for publication to Phys. Rev.

    Strong Gravitational Lensing and Dark Energy Complementarity

    Full text link
    In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w_0 and time variation w_a. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1% accuracy can improve equation of state characterization by 15-50%. Next generation surveys should provide data on roughly 10^5 lens systems, though systematic errors will remain challenging.Comment: 7 pages, 5 figure

    Exo-hydrogenated Single Wall Carbon Nanotubes

    Full text link
    An extensive first-principles study of fully exo-hydrogenated zigzag (n,0) and armchair (n,n) single wall carbon nanotubes (Cn_nHn_n), polyhedral molecules including cubane, dodecahedrane, and C60_{60}H60_{60} points to crucial differences in the electronic and atomic structures relevant to hydrogen storage and device applications. Cn_nHn_n's are estimated to be stable up to the radius of a (8,8) nanotube, with binding energies proportional to 1/R. Attaching a single hydrogen to any nanotube is always exothermic. Hydrogenation of zigzag nanotubes is found to be more likely than armchair nanotubes with similar radius. Our findings may have important implications for selective functionalization and finding a way of separating similar radius nanotubes from each other.Comment: 5 pages, 4 postscript figures, Revtex file, To be appear in Physical Review

    ff-minimal surface and manifold with positive mm-Bakry-\'{E}mery Ricci curvature

    Full text link
    In this paper, we first prove a compactness theorem for the space of closed embedded ff-minimal surfaces of fixed topology in a closed three-manifold with positive Bakry-\'{E}mery Ricci curvature. Then we give a Lichnerowicz type lower bound of the first eigenvalue of the ff-Laplacian on compact manifold with positive mm-Bakry-\'{E}mery Ricci curvature, and prove that the lower bound is achieved only if the manifold is isometric to the nn-shpere, or the nn-dimensional hemisphere. Finally, for compact manifold with positive mm-Bakry-\'{E}mery Ricci curvature and ff-mean convex boundary, we prove an upper bound for the distance function to the boundary, and the upper bound is achieved if only if the manifold is isometric to an Euclidean ball.Comment: 15 page

    Long-term perturbations due to a disturbing body in elliptic inclined orbit

    Full text link
    In the current study, a double-averaged analytical model including the action of the perturbing body's inclination is developed to study third-body perturbations. The disturbing function is expanded in the form of Legendre polynomials truncated up to the second-order term, and then is averaged over the periods of the spacecraft and the perturbing body. The efficiency of the double-averaged algorithm is verified with the full elliptic restricted three-body model. Comparisons with the previous study for a lunar satellite perturbed by Earth are presented to measure the effect of the perturbing body's inclination, and illustrate that the lunar obliquity with the value 6.68\degree is important for the mean motion of a lunar satellite. The application to the Mars-Sun system is shown to prove the validity of the double-averaged model. It can be seen that the algorithm is effective to predict the long-term behavior of a high-altitude Martian spacecraft perturbed by Sun. The double-averaged model presented in this paper is also applicable to other celestial systems.Comment: 28 pages, 6 figure

    Critical Dynamics of Magnets

    Get PDF
    We review our current understanding of the critical dynamics of magnets above and below the transition temperature with focus on the effects due to the dipole--dipole interaction present in all real magnets. Significant progress in our understanding of real ferromagnets in the vicinity of the critical point has been made in the last decade through improved experimental techniques and theoretical advances in taking into account realistic spin-spin interactions. We start our review with a discussion of the theoretical results for the critical dynamics based on recent renormalization group, mode coupling and spin wave theories. A detailed comparison is made of the theory with experimental results obtained by different measuring techniques, such as neutron scattering, hyperfine interaction, muon--spin--resonance, electron--spin--resonance, and magnetic relaxation, in various materials. Furthermore we discuss the effects of dipolar interaction on the critical dynamics of three--dimensional isotropic antiferromagnets and uniaxial ferromagnets. Special attention is also paid to a discussion of the consequences of dipolar anisotropies on the existence of magnetic order and the spin--wave spectrum in two--dimensional ferromagnets and antiferromagnets. We close our review with a formulation of critical dynamics in terms of nonlinear Langevin equations.Comment: Review article (154 pages, figures included
    corecore