860 research outputs found

    An idealized numerical study of tropical cyclogenesis and evolution at the Equator

    Get PDF
    Tropical cyclone formation and evolution at, or near, the Equator is explored using idealized three‐dimensional model simulations, starting from a prescribed, initial, weak counterclockwise rotating vortex in an otherwise quiescent, nonrotating environment. Three simulations are carried out in which the maximum tangential wind speed (5 m surn:x-wiley:qj:media:qj3701:qj3701-math-0001) is specified at an initial radius of 50, 100, or 150 km. After a period of gestation lasting between 30 and 60 hr, the vortices intensify rapidly, the evolution being similar to that for vortices away from the Equator. In particular, the larger the initial vortex size, the longer the gestation period, the larger the maximum intensity attained, and the longer the vortex lifetime. Beyond a few days, the vortices decay as the cyclonic vorticity source provided by the initial vortex is depleted and negative vorticity surrounding the vortex core is drawn inwards by the convectively driven overturning circulation. In these negative vorticity regions, the flow is inertially/centrifugally unstable. The vortex evolution during the mature and decay phases differs from that in simulations away from the Equator, where inertially unstable regions are much more limited in area. Vortex decay in the simulations appears to be related intimately to the development of inertial instability, which is accompanied by an outward‐propagating band of deep convection. The degree to which this band of deep convection is realistic is unknown

    Cooperative research: an example from the Wet Tropics of Queensland

    Get PDF
    In recent years there has been wider recognition of the important role that Indigenous knowledge can play in developing and implementing natural resource management (NRM) strategies. The biophysical surroundings of many Indigenous peoples are of symbolic significance to them, hence their perception and values of natural resources may be vastly different to those of scientists or managers. We discuss a research approach that explicitly embraces the co-production of knowledge to facilitate NRM in Australia. We demonstrate that if particular methodologies are used and specific criteria met, cooperative research can represent one pathway for the integration of Indigenous and scientific knowledge. We suggest an important step for genuine knowledge and systems integration is in research direction-setting. Our approach practices multi-directional learning and mutual benefit, promoting cross transfer of skills by the cooperative generation and documentation of information. Indigenous knowledge and associated systems are strengthened and the value of Indigenous knowledge and systems is recognised alongside accepted scientific knowledge and methods. Essential to the methodology used is the creation of partnerships based on trust between co-researchers and the generation of genuine action research outcomes

    Generalized Farey trees, transfer Operators and phase transitions

    Full text link
    We consider a family of Markov maps on the unit interval, interpolating between the tent map and the Farey map. The latter map is not uniformly expanding. Each map being composed of two fractional linear transformations, the family generalizes many particular properties which for the case of the Farey map have been successfully exploited in number theory. We analyze the dynamics through the spectral analysis of generalized transfer operators. Application of the thermodynamic formalism to the family reveals first and second order phase transitions and unusual properties like positivity of the interaction function.Comment: 39 pages, 10 figure

    Refining human palaeodietary reconstruction using amino acid delta N-15 values of plants, animals and humans.

    Get PDF
    An established method of estimating the trophic level of an organism is through stable isotope analysis of its tissues and those of its diet. This method has been used in archaeology to reconstruct past human diet from the stable nitrogen isotope (d15N) values of human and herbivore bone collagen. However, this approach, using the 15N-enrichment of human bone collagen d15N values over associated herbivore bone collagen d15N values to predict the relative importance of animal protein, relies on the assumptions that: (i) the d15N values of plants consumed by humans and herbivores are identical, and (ii) the 15Nenrichment between diet and consumer is consistent. Bone collagen amino acid d15N values have the potential to tackle these uncertainties, as they constrain the factors influencing bone collagen d15N values. In this study, the d15N values of glutamic acid and phenylalanine in human and herbivore bone collagen isolates from Neolithic sites in Germany, Greece and Turkey were determined by gas chromatography-combustion-isotope ratio mass spectrometry. The fraction of animal protein in total dietary protein consumed by the humans was estimated by: (i) comparing bulk human and herbivore collagen d15N values, (ii) comparing bulk human and herbivore collagen and ancient charred cereal grain d15N values, (iii) comparing human bone collagen d15NGlutamic acid and d15NPhenylalanine values, and (iv) comparing d15NGlutamic acid values of human and herbivore bone collagen and estimated d15NGlutamic acid values of ancient charred cereal grains. Where determined cereal grain d15N values are higher than estimated herbivore forage values, estimates of animal protein consumption are significantly lower, emphasising the importance of the plant nitrogen contribution to human bone collagen. This study also highlights the need for further investigation into: (i) the D15NConsumer-Diet values of glutamic acid and phenylalanine in terrestrial ecosystems, and (ii) D15NGlutamic acid-Phenylalanine values of common plant foods in order to improve the accuracy and more widespread applicability of amino acid-based methods for palaeodietary reconstruction

    Unsupervised Classification of SAR Images using Hierarchical Agglomeration and EM

    Get PDF
    We implement an unsupervised classification algorithm for high resolution Synthetic Aperture Radar (SAR) images. The foundation of algorithm is based on Classification Expectation-Maximization (CEM). To get rid of two drawbacks of EM type algorithms, namely the initialization and the model order selection, we combine the CEM algorithm with the hierarchical agglomeration strategy and a model order selection criterion called Integrated Completed Likelihood (ICL). We exploit amplitude statistics in a Finite Mixture Model (FMM), and a Multinomial Logistic (MnL) latent class label model for a mixture density to obtain spatially smooth class segments. We test our algorithm on TerraSAR-X data

    Extragalactic neutrino background from very young pulsars surrounded by supernova envelopes

    Full text link
    We estimate the extragalactic muon neutrino background which is produced by hadrons injected by very young pulsars at an early phase after supernova explosion. It is assumed that hadrons are accelerated in the pulsar wind zone which is filled with thermal photons captured below the expanding supernova envelope. In collisions with those thermal photons hadrons produce pions which decay into muon neutrinos. At a later time, muon neutrinos are also produced by the hadrons in collisions with matter of the expanding envelope. We show that extragalactic neutrino background predicted by such a model should be detectable by the planned 1 km2^2 neutrino detector if a significant part of pulsars is born with periods shorter than ∌10\sim 10 ms. Since such population of pulsars is postulated by the recent models of production of extremely high energy cosmic rays, detection of neutrinos with predicted fluxes can be used as their observational test.Comment: 4 pages, 2 figures, A&A style, accepted to A&A Let

    Relativistic effects and quasipotential equations

    Get PDF
    We compare the scattering amplitude resulting from the several quasipotential equations for scalar particles. We consider the Blankenbecler-Sugar, Spectator, Thompson, Erkelenz-Holinde and Equal-Time equations, which were solved numerically without decomposition into partial waves. We analyze both negative-energy state components of the propagators and retardation effects. We found that the scattering solutions of the Spectator and the Equal-Time equations are very close to the nonrelativistic solution even at high energies. The overall relativistic effect increases with the energy. The width of the band for the relative uncertainty in the real part of the scattering TT matrix, due to different dynamical equations, is largest for backward-scattering angles where it can be as large as 40%.Comment: Accepted for publication in Phys. Rev.

    Unitarity and the Bethe-Salpeter Equation

    Full text link
    We investigate the relation between different three-dimensional reductions of the Bethe-Salpeter equation and the analytic structure of the resultant amplitudes in the energy plane. This correlation is studied for both the ϕ2σ\phi^2\sigma interaction Lagrangian and the πN\pi N system with ss-, uu-, and tt-channel pole diagrams as driving terms. We observe that the equal-time equation, which includes some of the three-body unitarity cuts, gives the best agreement with the Bethe-Salpeter result. This is followed by other 3-D approximations that have less of the analytic structure.Comment: 17 pages, 8 figures; RevTeX. Version accepted for publication in Phys. Rev.
    • 

    corecore