206 research outputs found

    Infinite N phase transitions in continuum Wilson loop operators

    Full text link
    We define smoothed Wilson loop operators on a four dimensional lattice and check numerically that they have a finite and nontrivial continuum limit. The continuum operators maintain their character as unitary matrices and undergo a phase transition at infinite N reflected by the eigenvalue distribution closing a gap in its spectrum when the defining smooth loop is dilated from a small size to a large one. If this large N phase transition belongs to a solvable universality class one might be able to calculate analytically the string tension in terms of the perturbative Lambda-parameter. This would be achieved by matching instanton results for small loops to the relevant large-N-universal function which, in turn, would be matched for large loops to an effective string theory. Similarities between our findings and known analytical results in two dimensional space-time indicate that the phase transitions we found only affect the eigenvalue distribution, but the traces of finite powers of the Wilson loop operators stay smooth under scaling.Comment: 31 pages, 9 figures, typos and references corrected, minor clarifications adde

    Bose-Einstein condensate collapse: a comparison between theory and experiment

    Full text link
    We solve the Gross-Pitaevskii equation numerically for the collapse induced by a switch from positive to negative scattering lengths. We compare our results with experiments performed at JILA with Bose-Einstein condensates of Rb-85, in which the scattering length was controlled using a Feshbach resonance. Building on previous theoretical work we identify quantitative differences between the predictions of mean-field theory and the results of the experiments. Besides the previously reported difference between the predicted and observed critical atom number for collapse, we also find that the predicted collapse times systematically exceed those observed experimentally. Quantum field effects, such as fragmentation, that might account for these discrepancies are discussed.Comment: 4 pages, 2 figure

    On quantum teleportation with beam-splitter-generated entanglement

    Get PDF
    Following the lead of Cochrane, Milburn, and Munro [Phys. Rev. A {\bf 62}, 062307 (2000)], we investigate theoretically quantum teleportation by means of the number-sum and phase-difference variables. We study Fock-state entanglement generated by a beam splitter and show that two-mode Fock-state inputs can be entangled by a beam splitter into close approximations of maximally entangled eigenstates of the phase difference and the photon-number sum (Einstein-Podolsky-Rosen -- EPR -- states). Such states could be experimentally feasible with on-demand single-photon sources. We show that the teleportation fidelity can reach near unity when such ``quasi-EPR'' states are used as the quantum channel.Comment: 7 pages (two-column), 7 figures, submitted to Phys. Rev. A. Text unmodified, postscript error correcte

    Quadratic-nonlinear Landau-Zener transition for association of an atomic Bose-Einstein condensate with inter-particle elastic interactions included

    Full text link
    We study the strong coupling limit of a quadratic-nonlinear Landau-Zener problem for coherent photo- and magneto-association of cold atoms taking into account the atom-atom, atom-molecule, and molecule-molecule elastic scattering. Using an exact third-order nonlinear differential equation for the molecular state probability, we develop a variational approach which enables us to construct a highly accurate and simple analytic approximation describing the time dynamics of the coupled atom-molecule system. We show that the approximation describing time evolution of the molecular state probability can be written as a sum of two distinct terms; the first one, being a solution to a limit first-order nonlinear equation, effectively describes the process of the molecule formation while the second one, being a scaled solution to the linear Landau-Zener problem (but now with negative effective Landau-Zener parameter as long as the strong coupling regime is considered), corresponds to the remaining oscillations which come up when the process of molecule formation is over.Comment: 19 pages, 7 figures, accepted for publication in Eur. Phys. J.

    Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection

    Get PDF
    Background Candidalysin is a cytolytic peptide toxin secreted by Candida albicans hyphae and has significantly advanced our understanding of fungal pathogenesis. Candidalysin is critical for mucosal C albicans infections and is known to activate epithelial cells to induce downstream innate immune responses that are associated with protection or immunopathology during oral or vaginal infections. Furthermore, candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. However, the role of candidalysin in driving systemic infections is unknown. Methods In this study, using candidalysin-producing and candidalysin-deficient C albicans strains, we show that candidalysin activates mitogen-activated protein kinase (MAPK) signaling and chemokine secretion in endothelial cells in vitro. Results Candidalysin induces immune activation and neutrophil recruitment in vivo, and it promotes mortality in zebrafish and murine models of systemic fungal infection. Conclusions The data demonstrate a key role for candidalysin in neutrophil recruitment and fungal virulence during disseminated systemic C albicans infections

    How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature?

    Get PDF
    The coupling of the electromagnetic field to gravity is an age-old problem. Presently, there is a resurgence of interest in it, mainly for two reasons: (i) Experimental investigations are under way with ever increasing precision, be it in the laboratory or by observing outer space. (ii) One desires to test out alternatives to Einstein's gravitational theory, in particular those of a gauge-theoretical nature, like Einstein-Cartan theory or metric-affine gravity. A clean discussion requires a reflection on the foundations of electrodynamics. If one bases electrodynamics on the conservation laws of electric charge and magnetic flux, one finds Maxwell's equations expressed in terms of the excitation H=(D,H) and the field strength F=(E,B) without any intervention of the metric or the linear connection of spacetime. In other words, there is still no coupling to gravity. Only the constitutive law H= functional(F) mediates such a coupling. We discuss the different ways of how metric, nonmetricity, torsion, and curvature can come into play here. Along the way, we touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld, Heisenberg-Euler, Plebanski), linear ones, including the Abelian axion (Ni), and find a method for deriving the metric from linear electrodynamics (Toupin, Schoenberg). Finally, we discuss possible non-minimal coupling schemes.Comment: Latex2e, 26 pages. Contribution to "Testing Relativistic Gravity in Space: Gyroscopes, Clocks, Interferometers ...", Proceedings of the 220th Heraeus-Seminar, 22 - 27 August 1999 in Bad Honnef, C. Laemmerzahl et al. (eds.). Springer, Berlin (2000) to be published (Revised version uses Springer Latex macros; Sec. 6 substantially rewritten; appendices removed; the list of references updated

    Liposomes in Biology and Medicine

    Full text link
    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS

    Mean field effects on the scattered atoms in condensate collisions

    Full text link
    We consider the collision of two Bose Einstein condensates at supersonic velocities and focus on the halo of scattered atoms. This halo is the most important feature for experiments and is also an excellent testing ground for various theoretical approaches. In particular we find that the typical reduced Bogoliubov description, commonly used, is often not accurate in the region of parameters where experiments are performed. Surprisingly, besides the halo pair creation terms, one should take into account the evolving mean field of the remaining condensate and on-condensate pair creation. We present examples where the difference is clearly seen, and where the reduced description still holds.Comment: 6 pages, 4 figure

    Age-dependent associations between 25-hydroxy Vitamin D levels and COPD symptoms: Analysis of SPIROMICS

    Get PDF
    Introduction: Age and vitamin D levels may affect symptom burden in chronic obstructive pulmonary disease (COPD). We used the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) to determine independent associations between vitamin D levels and COPD symptoms in different age strata. Methods: Serum 25-hydroxy (OH)-vitamin D levels were modeled continuously and categorically (65 years old), multivariable modeling was performed to identify relationships between 25-OH-vitamin D levels and the COPD Assessment Test (CAT), the modified Medical Research Council score (mMRC), the St George's Respiratory Questionnaire (SGRQ) total and subdomain scores, the Veterans' Specific Activity Questionnaire, and the 6-minute walk test distance. Results: In the middle-aged group, each 5ng/ml higher 25-OH-vitamin D level was independently associated with more favorable CAT score (-0.35[-0.67 to -0.03], P=0.03), total SGRQ (-0.91[-1.65 to -0.17]; P=0.02), and the SGRQ subdomains (Symptoms:-1.07[-1.96 to -0.18], P=0.02; Impact: -0.77[-1.53 to -0.003], P=0.049; Activity: -1.07[-1.96 to -0.18], P=0.02). These associations persisted after the addition of comorbidity score, reported vitamin D supplementation, outdoor time, or season of blood draw to models. No associations were observed between 25-OH-vitamin D levels and symptom scores in the older age group. Discussion: When controlled for clinically relevant covariates, higher 25-OH-vitamin D levels are associated with more favorable respiratory-specific symptoms and quality-of-life assessments in middle-age but not older COPD individuals. Study of the role of vitamin D supplementation in the symptom burden of younger COPD patients is needed

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    • …
    corecore