602 research outputs found

    Keep it simple: three indicators to deal with overfishing

    Get PDF
    Three simple fisheries indicators are presented: (i) percentage of mature fish in catch, with 100% as target; (ii) percent of specimens with optimum length in catch, with 100% as target; and (iii) percentage of ‘mega-spawners‘ in catch, with 0% as target, and 30–40% as representative of reasonable stock structure if no upper size limit exists. Application of these indicators to stocks of Gadus morhua, Sardinella aurita and Epinephelus aeneus demonstrate their usefulness. It is argued that such simple indicators have the potential to allow more stakeholders such as fishers, fish dealers, supermarket managers, consumers and politicians to participate in fisheries management and eventually hold and reverse the global pattern of convenience overfishing, which is defined here as deliberate overfishing sanctioned by official bodies who find it more convenient to risk eventual collapse of fish stocks than to risk social and political conflicts

    Commission 10: Solar Activity

    Get PDF
    Commission 10 aims at the study of various forms of solar activity, including networks, plages, pores, spots, fibrils, surges, jets, filaments/prominences, coronal loops, flares, coronal mass ejections (CMEs), solar cycle, microflares, nanoflares, coronal heating etc., which are all manifestation of the interplay of magnetic fields and solar plasma. Increasingly important is the study of solar activities as sources of various disturbances in the interplanetary space and near-Earth “space weather”. Over the past three years a major component of research on the active Sun has involved data from the RHESSI spacecraft. This review starts with an update on current and planned solar observations from spacecraft. The discussion of solar flares gives emphasis to new results from RHESSI, along with updates on other aspects of flares. Recent progress on two theoretical concepts, magnetic reconnection and magnetic helicity is then summarized, followed by discussions of coronal loops and heating, the magnetic carpet and filaments. The final topic discussed is coronal mass ejections and space weather. The discussions on each topic is relatively brief, and intended as an outline to put the extensive list of references in context. The review was prepared jointly by the members of the Organizing Committee, and the names of the primary contributors to the various sections are indicated in parentheses

    In vivo robotics: the automation of neuroscience and other intact-system biological fields

    Get PDF
    Robotic and automation technologies have played a huge role in in vitro biological science, having proved critical for scientific endeavors such as genome sequencing and high-throughput screening. Robotic and automation strategies are beginning to play a greater role in in vivo and in situ sciences, especially when it comes to the difficult in vivo experiments required for understanding the neural mechanisms of behavior and disease. In this perspective, we discuss the prospects for robotics and automation to influence neuroscientific and intact-system biology fields. We discuss how robotic innovations might be created to open up new frontiers in basic and applied neuroscience and present a concrete example with our recent automation of in vivo whole-cell patch clamp electrophysiology of neurons in the living mouse brain.National Institutes of Health (U.S.) (Single Cell Grant 1 R01 EY023173)Human Frontier Science Program (Strasbourg, France)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramMIT Media Lab ConsortiumNew York Stem Cell Foundation (Robertson Investigator Award)National Institutes of Health (U.S.) (Director's New Innovator Award 1DP2OD002002)National Institutes of Health (U.S.) (EUREKA Award 1R01GM104948)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (CAREER Award CBET 1053233)National Science Foundation (U.S.) (DMS1042134)Paul G. Allen Family Foundation (Distinguished Investigator in Neuroscience Award)Skolkovo Institute of Science and Technolog

    Age and sex differences in niche use at molt and its effect on plumage coloration characteristics in a bird

    Get PDF
    Bird plumage is often very colorful and can communicate the quality of the bearer to conspecifics. These plumage-based signals of quality are composed of multiple pigments (e.g., melanin and carotenoids). Therefore, sex and age classes, which often show marked differences in plumage coloration, may have different dietary needs for the different plumage components and this might promote preferences for different dietary niches at different molting stages. However, no study has addressed the role that changes in niche use play in the expression of multiple component plumage signals in birds. We used stable isotope analysis to test the hypothesis that niche use is related to age and sex and to differently cultured plumage patches, yellow carotenoid-based and black melanin-based, in great tits Parus major. We recorded high niche overlap between plumage patches, although ÎŽ15N was higher in black than yellow plumage. Niche overlap was relatively low for age classes and relatively high for sex classes, and age classes showed a contrasting pattern of niche overlap between carotenoid- and melanin-based plumages. Moreover, ÎŽ13C, but not ÎŽ15N, had a significant negative relationship with carotenoid-based plumage, which was only apparent in juveniles. Taken together, our results demonstrate that niche use had a moderate influence on plumage coloration characteristics of great tit individuals, mostly associated with ÎŽ13C rather than with ÎŽ15N and with age rather than with sex. Therefore, our study is significant because it confirms the relevance of niche use during ornament production in free-living birds

    Hsp70 in mitochondrial biogenesis

    Get PDF
    The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix

    Scales of the Extra Dimensions and their Gravitational Wave Backgrounds

    Get PDF
    Circumstances are described in which symmetry breaking during the formation of our three-dimensional brane within a higher-dimensional space in the early universe excites mesoscopic classical radion or brane-displacement degrees of freedom and produces a detectable stochastic background of gravitational radiation. The spectrum of the background is related to the unification energy scale and the the sizes and numbers of large extra dimensions. It is shown that properties of the background observable by gravitational-wave observatories at frequencies f≈10−4f\approx 10^{-4} Hz to 10310^3 Hz contain information about unification on energy scales from 1 to 101010^{10} TeV, gravity propagating through extra-dimension sizes from 1 mm to 10−1810^{-18}mm, and the dynamical history and stabilization of from one to seven extra dimensions.Comment: 6 pages, Latex, 1 figure, submitted to Phys. Re

    Isotopic analysis of faunal material from South Uist, Western Isles, Scotland

    Get PDF
    This paper reports on the results from stable isotope analysis of faunal bone collagen from a number of Iron Age and later sites on the island of South Uist, in the Western Isles, Scotland. This preliminary investigation into the isotopic signatures of the fauna is part of a larger project to model the interaction between humans, animals, and the broader environment in the Western Isles. The results demonstrate that the island fauna data fall within the range of expected results for the UK, with the terrestrial herbivorous diets of cattle and sheep confi rmed. The isotopic composition for pigs suggests that some of these animals had an omnivorous diet, whilst a single red deer value might be suggestive of the consumption of marine foods, such as by grazing on seaweed. However, further analysis is needed in order to verify this anomalous isotopic ratio

    Review article: MHD wave propagation near coronal null points of magnetic fields

    Full text link
    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a ÎČ=0\beta=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfven wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfven wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note this is a 2011 paper, not a 2010 pape

    On the thermal sunset diagram for scalar field theories

    Full text link
    We study the so-called `` sunset diagram'', which is one of two-loop self-energy diagrams, for scalar field theories at finite temperature. For this purpose, we first find the complete expression of the bubble diagram, the one-loop subdiagram of the sunset diagram, for arbitrary momentum. We calculate the temperature independent part and dependent part of the sunset diagram separately. For the former, we obtain the discontinuous part first and the finite continuous part next using a twice-subtracted dispersion relation. For the latter, we express it as a one-dimensional integral in terms of the bubble diagram. We also study the structure of the discontinuous part of the sunset diagram. Physical processes, which are responsible for it, are identified. Processes due to the scattering with particles in the heat bath exist only at finite temperature and generate discontinuity for arbitrary momentum, which is a remarkable feature of the two-loop diagrams at finite temperature. As an application of our result, we study the effect of the diagram on the spectral function of the sigma meson at finite temperature in the linear sigma model, which was obtained at one-loop order previously. At high temperature where the decay σ→ππ\sigma\to\pi\pi is forbidden, sigma acquires a finite width of the order of 10MeV10 {\rm MeV} while within the one-loop calculation its width vanishes. At low temperature, the spectrum does not deviate much from that at one-loop order. Possible consequences with including other two-loop diagrams are discussed.Comment: 30 page

    Cosmic-ray strangelets in the Earth's atmosphere

    Full text link
    If strange quark matter is stable in small lumps, we expect to find such lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays. Following recent astrophysical models, we predict the strangelet flux at the top of the atmosphere, and trace the strangelets' behavior in atmospheric chemistry and circulation. We show that several strangelet species may have large abundances in the atmosphere; that they should respond favorably to laboratory-scale preconcentration techniques; and that they present promising targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
    • 

    corecore