2,368 research outputs found

    The Friedmann-Lemaitre-Robertson-Walker Big Bang singularities are well behaved

    Full text link
    We show that the Big Bang singularity of the Friedmann-Lemaitre-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.Comment: 10 pages, 5 figure

    Bringing the power of dynamic languages to hardware control systems

    Get PDF
    Hardware control systems are normally programmed using high-performance languages like C or C++ and increasingly also Java. All these languages are strongly typed and compiled which brings usually good performance but at the cost of a longer development and testing cycle and the need for more programming expertise. Dynamic languages which were long thought to be too slow and not powerful enough for control purposes are, thanks to modern powerful computers and advanced implementation techniques, fast enough for many of these tasks. We present examples from the LHCb Experiment Control System (ECS), which is based on a commercial SCADA software. We have successfully used Python to integrate hardware devices into the ECS. We present the necessary lightweight middle-ware we have developed, including examples for controlling hardware and software devices. We also discuss the development cycle, tools used and compare the effort to traditional solutions

    Flavor states of mixed neutrinos

    Full text link
    By resorting to previous results on flavor mixing in Quantum Field Theory, we show how to consistently define flavor states of mixed neutrinos as eigenstates of the flavor charge operators.Comment: 4 pages, presented at 13th International Symposium on Particles, Strings and Cosmology, PASCOS-07, 2-7 July 2007, Imperial College Londo

    Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction

    Full text link
    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question---correlation, predictability, predictive cost, observer synchronization, and the like---induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II, to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.Comment: 24 pages, 3 figures, 4 tables; current version always at http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt1.ht

    Phase lag in epidemics on a network of cities

    Full text link
    We study the synchronisation and phase-lag of fluctuations in the number of infected individuals in a network of cities between which individuals commute. The frequency and amplitude of these oscillations is known to be very well captured by the van Kampen system-size expansion, and we use this approximation to compute the complex coherence function that describes their correlation. We find that, if the infection rate differs from city to city and the coupling between them is not too strong, these oscillations are synchronised with a well defined phase lag between cities. The analytic description of the effect is shown to be in good agreement with the results of stochastic simulations for realistic population sizes.Comment: 10 pages, 6 figure

    GaN and InN nanowires grown by MBE: a comparison

    Full text link
    Morphological, optical and transport properties of GaN and InN nanowires grown by molecular beam epitaxy (MBE) have been studied. The differences between the two materials in respect to growth parameters and optimization procedure was stressed. The nanowires crystalline quality has been investigated by means of their optical properties. A comparison of the transport characteristics was given. For each material a band schema was shown, which takes into account transport and optical features and is based on Fermi level pinning at the surface.Comment: 5 pages, 5 figure

    The High-Flux Backscattering Spectrometer at the NIST Center for Neutron Research

    Full text link
    We describe the design and current performance of the high-flux backscattering spectrometer located at the NIST Center for Neutron Research. The design incorporates several state-of-the-art neutron optical devices to achieve the highest flux on sample possible while maintaining an energy resolution of less than 1mueV. Foremost among these is a novel phase-space transformation chopper that significantly reduces the mismatch between the beam divergences of the primary and secondary parts of the instrument. This resolves a long-standing problem of backscattering spectrometers, and produces a relative gain in neutron flux of 4.2. A high-speed Doppler-driven monochromator system has been built that is capable of achieving energy transfers of up to +-50mueV, thereby extending the dynamic range of this type of spectrometer by more than a factor of two over that of other reactor-based backscattering instruments
    • …
    corecore