1,098 research outputs found

    Cell and method for electrolysis of water and anode

    Get PDF
    An electrolytic cell for converting water vapor to oxygen and hydrogen include an anode comprising a foraminous conductive metal substrate with a 65-85 weight percent iridium oxide coating and 15-35 weight percent of a high temperature resin binder. A matrix member contains an electrolyte to which a cathode substantially inert. The foraminous metal member is most desirably expanded tantalum mesh, and the cell desirably includes reservoir elements of porous sintered metal in contact with the anode to receive and discharge electrolyte to the matrix member as required. Upon entry of a water vapor containing airstream into contact with the outer surface of the anode and thence into contact with iridium oxide coating, the water vapor is electrolytically converted to hydrogen ions and oxygen with the hydrogen ions migrating through the matrix to the cathode and the oxygen gas produced at the anode to enrich the air stream passing by the anode

    Electrochemical performance investigations on the hydrogen depolarized CO2 concentrator

    Get PDF
    An extensive investigation of anode and cathode polarization in complete cells and half cells was conducted to determine the factors affecting HDC electrode polarization and the nature of this polarization. Matrix-electrolyte-electrode interactions and cell electrolyte composition were also investigated. The electrodes were found to have normal performance capabilities. The HDC anode polarization characteristics were correlated with a theoretical kinetic analysis; and, except for some quantitative details, a rather complete understanding of the causes for HDC electrode polarization was formulated. One of the important finding resulting from the kinetic analysis was that platinum appears to catalyze the decomposition of carbonic acid to carbon dioxide and water. It was concluded that the abnormal voltage performance of the One Man ARS HDC cells was caused by insufficient cell electrolyte volume under normal operating conditions due to deficiencies in the reservoir to cell interfacing

    One man electrochemical air revitalization system

    Get PDF
    An integrated water vapor electrolysis (WVE) hydrogen depolarized CO2 concentrator (HDC) system sized for one man support over a wide range of inlet air conditions was designed, fabricated, and tested. Data obtained during 110 days of testing verified that this system can provide the necessary oxygen, CO2 removal, and partial humidity control to support one man (without exceeding a cabin partial pressure of 3.0 mmHg for CO2 and while maintaining a 20% oxygen level), when operated at a WVE current of 50 amperes and an HDC current of 18 amperes. An evaluation to determine the physical properties of tetramethylammonium bicarbonate (TMAC) and hydroxide was made. This provides the necessary electrolyte information for designing an HDC cell using TMAC

    Feasibility study of a humidity control and oxygen supply system utilizing a water vapor electrolysis unit

    Get PDF
    Design and tests of water vapor electrolysis cell for generating and regulating spacecraft oxygen and for controlling humidit

    Hydrogen depolarized carbon dioxide concentrator performance improvements and cell pair structural tests

    Get PDF
    The investigations and testing associated with the CO2 removal efficiency and voltage degradation of a hydrogen depolarized carbon oxide concentrator are reported. Also discussed is the vibration testing of a water vapor electrolysis cell pair. Performance testing of various HDC cell pairs with Cs2CO3 electrolyte provided sufficient parametric and endurance data to size a six man space station prototype CO2 removal system as having 36 HDC cell pairs, and to verify a life capability exceeding six moths. Testing also demonstrated that tetramethylammonium carbonate is an acceptable HDC electrolyte for operating over the relative humidity range of 30 to 90 percent and over a temperature range of 50 to 80 F

    Factors Associated with Research in Management in Australian Commerce and Business Faculties

    Get PDF
    Measurable research outputs have become part of the overall research management structure within Australian universities in the past ten years. As such, policy makers and administrators alike have come to regard effective management structures and mechanisms as fundamental components of a research environment capable of generating desired quantities of quality outcomes. This paper is based on empirical research carried out over the past year that surveyed academics from commerce and business faculties in Australian universities. The data show that factors such as gender, discipline, and academic level appear to impinge on the relative components that make up research management

    Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    Full text link
    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming `tungsten bronzes'. Similar optical effects are observed upon removing oxygen from WO_3, although the electronic properties are slightly different. Here we present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behaviour of the bronzes are relatively consistent. NaWO_3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. Next, this was extended to a study of fractional doping in the Na_xWO_3 system (0 < x < 1). A linear variation in cell parameter, and a systematic change in the position of the Fermi level up into the valence band was observed with increasing x. In the underdoped WO_3-x system however, the Fermi level undergoes a sudden jump into the conduction band at around x = 0.2. Lastly, three compounds of a layered WO_4&#215;a,wdiaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO_3 compound which relate well to experimental UV-visible spectroscopy results.Comment: 12 pages, 16 figure

    Modelling the tongue-of-ionisation using CTIP with SuperDARN electric potential input: verification by radiotomography

    Get PDF
    Electric potential patterns obtained by the SuperDARN radar network are used as input to the Coupled Thermosphere-Ionosphere-Plasmasphere model, in an attempt to improve the modelling of the spatial distribution of the ionospheric plasma at high latitudes. Two case studies are considered, one under conditions of stable IMF &lt;I&gt;B&lt;sub&gt;z&lt;/sub&gt;&lt;/I&gt; negative and the other under stable IMF &lt;I&gt;B&lt;sub&gt;z&lt;/sub&gt;&lt;/I&gt; positive. The modelled plasma distributions are compared with sets of well-established tomographic reconstructions, which have been interpreted previously in multi-instrument studies. For IMF &lt;I&gt;B&lt;sub&gt;z&lt;/sub&gt;&lt;/I&gt; negative both the model and observations show a tongue-of-ionisation on the nightside, with good agreement between the electron density and location of the tongue. Under &lt;I&gt;B&lt;sub&gt;z&lt;/sub&gt;&lt;/I&gt; positive, the SuperDARN input allows the model to reproduce a spatial plasma distribution akin to that observed. In this case plasma, unable to penetrate the polar cap boundary into the polar cap, is drawn by the convective flow in a tongue-of-ionisation around the periphery of the polar cap
    • …
    corecore