565 research outputs found

    The spin-1/2 square-lattice J_1-J_2 model: The spin-gap issue

    Full text link
    We use the coupled cluster method to high orders of approximation in order to calculate the ground-state energy, the ground-state magnetic order parameter, and the spin gap of the spin-1/2 J_1-J_2 model on the square lattice. We obtain values for the transition points to the magnetically disordered quantum paramagnetic phase of J_2^{c1}=0.454J_1 and J_2^{c2}= 0.588 J_1. The spin gap is zero in the entire parameter region accessible by our approach, i.e. for J_2 \le 0.49J_1 and J_2 > 0.58J_1. This finding is in favor of a gapless spin-liquid ground state in this parameter regime.Comment: 10 pages, 3 figures, accepted versio

    The magnetization process of the spin-one triangular-lattice Heisenberg antiferromagnet

    Full text link
    We apply the coupled cluster method and exact diagonalzation to study the uniform susceptibility and the ground-state magnetization curve of the triangular-lattice spin-1 Heisenberg antiferromagnet. Comparing our theoretical data for the magnetization curve with recent measurements on the s=1 triangular lattice antiferromagnet Ba3NiSb2O9 we find a very good agreement.Comment: 2 pages, 3 figure

    The Certainty of the Second Coming

    Get PDF
    https://digitalcommons.andrews.edu/books/1270/thumbnail.jp

    Cholinergic modulation of response properties and orientation tuning of neurons in primary visual cortex of anaesthetized Marmoset monkeys

    Get PDF
    Cortical processing is strongly influenced by the actions of neuromodulators such as acetylcholine (ACh). Early studies in anaesthetized cats argued that acetylcholine can cause a sharpening of orientation tuning functions and an improvement of the signal-to-noise ratio (SNR) of neuronal responses in primary visual cortex (V1). Recent in vitro studies have demonstrated that acetylcholine reduces the efficacy of feedback and intracortical connections via the activation of muscarinic receptors, and increases the efficacy of feed-forward connections via the activation of nicotinic receptors. If orientation tuning is mediated or enhanced by intracortical connections, high levels of acetylcholine should diminish orientation tuning. Here we investigate the effects of acetylcholine on orientation tuning and neuronal responsiveness in anaesthetized marmoset monkeys. We found that acetylcholine caused a broadening of the orientation tuning in the majority of cells, while tuning functions became sharper in only a minority of cells. Moreover, acetylcholine generally facilitated neuronal responses, but neither improved signal-to-noise ratio, nor reduced trial-to-trial firing rate variance systematically. Acetylcholine did however, reduce variability of spike occurrences within spike trains. We discuss these findings in the context of dynamic control of feed-forward and lateral ⁄ feedback connectivity by acetylcholine

    Cocos (Keeling) Corals Reveal 200 Years of Multidecadal Modulation of Southeast Indian Ocean Hydrology by Indonesian Throughflow

    Get PDF
    The only low latitude pathway of heat and salt from the Pacific Ocean to the Indian Ocean, known as Indonesian Throughflow (ITF), has been suggested to modulate Global Mean Surface Temperature (GMST) warming through redistribution of surface Pacific Ocean heat. ITF observations are only available since ~1990s, and thus, its multidecadal variability on longer time scales has remained elusive. Here we present a 200 year bimonthly record of geochemical parameters (d 18 O-Sr/Ca) measured on Cocos (Keeling) corals tracking sea surface temperature (SST; Sr/Ca) and sea surface salinity (SSS; seawater-d 18 O-d 18 O sw ) in the southeastern tropical Indian Ocean (SETIO). Our results show that SETIO SSS and d 18 O sw were impacted by ITF transport over the past 60 years, and therefore, reconstructions of Cocos d 18 O sw hold information on past ITF variability on longer time spans. Over the past 200 years ITF leakage into SETIO is dominated by the interannual climate modes of the Pacific Ocean (El Niño—Southern Oscillation) and Indian Ocean (Indian Ocean Dipole). Pacific decadal climate variability (represented by the Pacific Decadal Oscillation) significantly impacted ITF strength over the past 200 years determining the spatiotemporal SST and SSS advection into the Indian Ocean on multidecadal time scales. A comparison of our SETIO d 18 O sw record to GMST shows that ITF transport varied in synchrony with global warming rate, being predominantly high/low during GMST warming slowdown/acceleration, respectively. This hints toward an important role for the ITF in global warming rate modulation

    Facies and faunal assemblage changes in response to the Holocene transgression in the Lagoon of Mayotte (Comoro Archipelago, SW Indian Ocean)

    Get PDF
    This paper documents the facies change in response to the Holocene transgression within five sediment cores taken in the lagoon of Mayotte, which contain a Type-1 depositional sequence (lowstand, transgressive and highstand deposits underlain by an erosive sequence boundary). Quantitative compositional analysis and visual examination of the bioclasts were used to document the facies changes. The distribution of the skeletal and non-skeletal grains in the lagoon of Mayotte is clearly controlled by (1) the rate and amplitude of the Holocene sea-level rise, (2) the pre-Holocene basement topography and (3) the growth-potential of the barrier reef during sea-level rise, and the changes in bathymetry and continuity during this period. The sequence boundary consists of the glacial karst surface. The change-over from the glacial lowstand is marked by the occurrence of mangrove deposits. Terrigenous and/or mixed terrigenous-carbonate muds to sandy muds with a mollusc or mollusc-ostracod assemblage dominate the transgressive deposits. Mixed carbonate-siliciclastic or carbonate sand to gravel with a mollusc-foraminifer or mollusc-coral-foraminifer assemblage characterize the early highstand deposits on the inner lagoonal plains. The early highstand deposits in the outer lagoonal plains consist of carbonate muds with a mollusc-foraminifer assemblage. Late highstand deposits consist of terrigenous muds in the nearshore bays, mixed terrigenous-carbonate sandy muds to sands with a mollusc-foraminifer assemblage on the inner lagoonal plains and mixed muds with a mollusc-foraminifer assemblage on the outer deep lagoonal plains. The present development stage of the individual lagoons comprises semi-enclosed to open lagoons with fair or good water exchange with the open ocean

    Evolution and progressive geomorphic manifestation of surface faulting: A comparison of the Wairau and Awatere faults, South Island, New Zealand

    Get PDF
    Field mapping and lidar analysis of surface faulting patterns expressed in flights of geologically similar fluvial terraces at the well-known Branch River and Saxton River sites along the Wairau (Alpine) and Awatere strike-slip faults, South Island, New Zealand, reveal that fault-related deformation patterns expressed in the topography at these sites are markedly less structurally complex along the higher-displacement (hundreds of kilometers), structurally mature Wairau fault than along the Awatere fault (∼13–20 km total slip). These differences, which are generally representative of the surface traces of these faults, provide direct evidence that surface faulting becomes structurally simpler with increasing cumulative fault offset. We also examine the degree to which off-fault deformation (OFD) is expressed in the landscape at the Saxton River site along the less structurally mature Awatere fault. Significantly greater amounts of OFD are discernible as a wide damage zone (∼460 m fault-perpendicular width) in older (ca. 15 ka), more-displaced (64–74 m) fluvial terraces than in younger (ca. 1–7 ka), less-displaced (<55 m) terraces; no OFD is discernible in the lidar data on the least-displaced (<35 m) terraces. From this, we infer that OFD becomes progressively more geomorphically apparent with accumulating displacement. These observations imply that (1) the processes that accommodate OFD are active during each earthquake, but may not be evident in deposits that have experienced relatively small displacements; (2) structures accommodating OFD will become progressively geomorphically clearer with increasing displacement; (3) geomorphic measurements of overall fault zone width taken in deposits that have experienced small displacements will be underestimates; and (4) fault slip rates based on geomorphic surface offsets will be underestimates for immature faults if based solely on measurements along the high-strain fault core
    corecore