477 research outputs found

    Adaptability of Irrigation to a Changing Monsoon in India: How far can we go?

    Get PDF
    Agriculture and the monsoon are inextricably linked in India. A large part of the steady rise in agricultural production since the onset of the Green Revolution in the 1960’s has been attributed to irrigation. Irrigation is used to supplement and buffer crops against precipitation shocks, but water availability for such use is itself sensitive to the erratic, seasonal and spatially heterogeneous nature of the monsoon. Most attention in the literature is given to crop yields (Guiteras, 2009; Fishman, 2012; Auffhammer et al, 2011) and their ability to withstand precipitation shocks, in the presence of irrigation (Fishman, 2012). However, there remains limited evidence about how natural weather variability and realized irrigation outcomes are related. We provide new evidence on the relationship between monsoon changes, irrigation variability and water availability by linking a process based hydrology model with an econometric model for one of the world’s most water stressed countries. India uses more groundwater for irrigation than any other country, and there is substantial evidence that this has led to depletion of groundwater aquifers. First, we build an econometric model of historical irrigation decisions using detailed crop-wise agriculture and weather data spanning 35 years from 1970-2004 for 311 districts across 19 major agricultural states in India. The source of agricultural data comes from the Village Dynamics in South Asia database at the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT). Weather data is sourced from the only long term continental scale daily observationally gridded precipitation and temperature dataset called APHRODITE (Asian Precipitation- Highly Resolved Observational Data Integration Towards Evaluation of the Water Resources), that captures the spatial extent of the monsoon across the Himalayas, South and South-East Asia, and the Middle East in great detail. We use panel data approaches to control for unobserved and omitted variables that can confound the true impacts of weather variability on irrigation. Exploiting the exogenous inter-annual variability in the monsoon, our multivariate regression models reveal that for crops grown in the wet season, irrigation is sensitive to distribution and total monsoon rainfall but not to ground or surface water availability. For crops grown in the dry season, total monsoon rainfall matters most, and its effect is sensitive to groundwater availability but differentially so for shallow dug wells and deep tube wells. The historical estimates from the econometric model are used to calculate future irrigated areas using three different bias-corrected climate model projections of monsoon climate for the years 2010 – 2050 under the strongest warming scenario ( business as usual scenario) RCP-8.5 from the CMIP5 (Coupled Model Intercomparison Project) models. These projections are then used as input to a physical hydrology model, such as the Water Balance Model, that tracks water use and exchange between the ground, atmosphere, runoff and stream networks. This enables us to quantify supply of water required to meet irrigation needs from sustainable sources such as rechargeable shallow groundwater, rivers and reservoirs, as well as unsustainable sources such as non- rechargeable groundwater. Preliminary results show that the significant variation in monsoon projections lead to very different results. Crops grown in the dry season show particularly divergent trends between model projections, leading to very different groundwater resource requirements. By combining the strengths of the economic and hydrology components, this work highlights potential sustainable or unsustainable water use trajectories that different regions within India will face

    Profile of confirmed H1N1 virus infected patients admitted in the swine flu isolation ward of tertiary care hospitals of Baroda district, Gujarat, India

    Get PDF
    Background: Influenza is truly an international disease. It occurs in all countries and affects millions of people every year. The Influenza A H1N1 in humans can be a mild illness or in some people it may result in serious, even life-threatening complications such as pneumonia, acute bronchitis, worsening of chronic conditions, respiratory failure and death. Objective: To study profile of confirmed H1N1 virus infected patients of Category “C” admitted in the swine flu isolation ward of tertiary care hospitals of Baroda District, Gujarat, India.Methods: This was a cross sectional observational study carried out in Baroda district of Gujarat state, India. All confirmed H1N1 virus infected 54 patients in Category “C” admitted in the swine flu isolation ward of both Government and private hospitals of Baroda district during the period of 1st January to 30th June, 2013 after taking verbal and written consent of the patients were enrolled in study. Before conducting the study approval was obtained from institutional ethical committee for human research. Data safety and confidentiality was also given due consideration. A predesigned semi-structured Performa was used. Detailed demographic and clinical data were recorded. Data was statistically analyzed using SPSS software (trial version).Results: Out of total 54 influenza A H1N1 cases, 23 patients (42.59%) were males. 4 (12.91%) female patients were pregnant. Majority (75%) of the cases were between 21-50 years of age group. Majority (90.7%) of the patients were from urban areas. Majority cases (94.4%) presented with cough, followed by  36 cases (66.7%) exhibiting high grade fever, 35 Cases (64.8%) had complain of breathlessness and 25 cases(46.3%) presented with sore throat. 19 cases (35%) had co-morbid condition with the influenza A H1N1 disease. In this study among patients with associated Comorbid condition, 16(84%) were discharged and only 3(16%) patients died. Whereas among patients without Comorbid condition, 29(83%) were discharged and 6(17%) died. This difference was not statistically significant (p=0.940).15 cases (27%) required ventilator support. Mortality of 9 cases (17%) occurred in the given duration of study and rest of cases 45(83%) were discharged from the hospital. Out of 54 cases, 4 cases had diabetes mellitus and from that 3 case were died. The difference was statistically significant (p=0.012).Conclusions: Influenza A H1N1 infection predominantly affects young age and equally affecting both genders. One fourth of total cases had severe illness and required ventilator support. Majority of patients died within 8 day of critical illness. All deaths were reported from urban area. Most common symptom in fatal cases of influenza A H1N1 was cough followed by breathlessness, high grade fever, mild fever and sore throat and the most common co morbidity was Diabetes Mellitus.

    Stress Analysis of Bell Crank Lever

    Get PDF
    Bell Crank Lever is important components from safety point of view since they are subjected to large amount of stresses. Hence to study the stress pattern in bell crank lever, analytical, numerical and photoelasticity methods are used. For analysis purpose virtual model of bell crank lever is prepared by picking data from design data book. Bending stresses in lever formula is used for determination of stresses in bell crank lever analytically. For numerical analysis bell crank lever is prepared using ANSYS and this model of bell crank lever in ANSYS where stress analysis is done by FEM. Finite Element Analysis(FEA) have been performed on various models of varying fillet radius, optimization for volume and reduction of materials form bell crank lever and by using photoelasticity of bell crank lever. Also for bell crank lever stress analysis is done by using method of FEM. From the output of these analyses it is observed that results obtained are in close agreement with each other and maximum failures stress concentration occurs at maximum bending surface. Comparison between numerical, FEM and experimentally are observed that results obtained are in close agreement with each other

    Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction

    Get PDF
    This paper describes and evaluates a new framework for modeling kinetic gas-particle partitioning of secondary organic aerosol (SOA) that takes into account diffusion and chemical reaction within the particle phase. The framework uses a combination of (a) an analytical quasi-steady-state treatment for the diffusion–reaction process within the particle phase for fast-reacting organic solutes, and (b) a two-film theory approach for slow- and nonreacting solutes. The framework is amenable for use in regional and global atmospheric models, although it currently awaits specification of the various gas- and particle-phase chemistries and the related physicochemical properties that are important for SOA formation. Here, the new framework is implemented in the computationally efficient Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) to investigate the competitive growth dynamics of the Aitken and accumulation mode particles. Results show that the timescale of SOA partitioning and the associated size distribution dynamics depend on the complex interplay between organic solute volatility, particle-phase bulk diffusivity, and particle-phase reactivity (as exemplified by a pseudo-first-order reaction rate constant), each of which can vary over several orders of magnitude. In general, the timescale of SOA partitioning increases with increase in volatility and decrease in bulk diffusivity and rate constant. At the same time, the shape of the aerosol size distribution displays appreciable narrowing with decrease in volatility and bulk diffusivity and increase in rate constant. A proper representation of these physicochemical processes and parameters is needed in the next generation models to reliably predict not only the total SOA mass, but also its composition- and number-diameter distributions, all of which together determine the overall optical and cloud-nucleating properties

    Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    Get PDF
    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS<sup>−</sup>) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr<sup>−1</sup>, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS<sup>−</sup> (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr<sup>−1</sup>, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m<sup>−3</sup>, with values up to 400 ng m<sup>−3</sup> over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20%) in CCN (at a supersaturation (<i>S</i>) of 0.2%) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to sea-salt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration

    The MESSy aerosol submodel MADE3 (v2.0b): description and a box model test

    Get PDF
    We introduce MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, 3rd generation; version: MADE3v2.0b), an aerosol dynamics submodel for application within the MESSy framework (Modular Earth Submodel System). MADE3 builds on the predecessor aerosol submodels MADE and MADE-in. Its main new features are the explicit representation of coarse mode particle interactions both with other particles and with condensable gases, and the inclusion of hydrochloric acid (HCl) / chloride (Cl) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new submodel as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). <br><br> In order to assess the performance of MADE3 we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model simulation of an idealised marine boundary layer test case. MADE3 and MADE results are very similar, except in the coarse mode, where the aerosol is dominated by sea spray particles. Cl is reduced in MADE3 with respect to MADE due to the HCl / Cl partitioning that leads to Cl removal from the sea spray aerosol in our test case. Additionally, the aerosol nitrate concentration is higher in MADE3 due to the condensation of nitric acid on coarse mode particles. MADE3 and PartMC-MOSAIC show substantial differences in the fine particle size distributions (sizes &lesssim; 2 ÎŒm) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distributions (sizes &gtrsim; 2 ÎŒm), and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model

    Cytoplasmic-Genic Male-Sterility in Interspecific Matings of Cajanus

    Get PDF
    The discovery of two stable male-sterile genes and the prevalence of adequate insect-aided cross-pollination led to the development and release of the first pigeonpea [Cajanus cajan (L.) Millsp.] hybrid in India. Commercialization of this hybrid is constrained because of the labor intensiveness of seed production and concerns about seed purity. Cytoplasmic male-steriles would effectively circumvent these constraints and revolutionize the hybrid seed industry. This paper reports the development of cytoplasmically determined male-sterility, which was accomplished by two methods: wide hybridization involving conventional backcrossing of Cajanus sericeus van der Maesen and Cajanus cajan and multiple cross genome transfer. In these matings, two forms of reversion to fertility were noticed, one influenced by low temperature and high humidity, and the other probably determined by genetic factors alone. The influence of temperature on fertility restoration as reported for Viciafaba L. is different from that seen in species crosses of Cajanus. The multiple cross genome transfer method resulted in stable cytoplasmic-genic male sterility maintainable by the pigeonpea genotypes ICPL 85030 and ICPL 90035. These male-sterile lines are in agronomically desirable backgrounds

    Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    Get PDF
    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of the Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of a pollution accumulation event (27&ndash;29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer-controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near-edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm equivalent circular diameter) increased with plume age, as did the organic mass per particle. Comparison of the CARES spectro-microscopic dataset with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that fresh particles in Mexico City contained three times as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (ranging from 16.6 to 47.3%) was larger than at the CARES urban site (13.4&ndash;15.7%), and the most aged samples from CARES contained fewer carbon–carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements will allow for a comprehensive evaluation of aerosol process models used in climate research
    • 

    corecore