530 research outputs found

    Functional anatomy of the masking level difference, an fMRI study

    Get PDF
    Introduction: Masking level differences (MLDs) are differences in the hearing threshold for the detection of a signal presented in a noise background, where either the phase of the signal or noise is reversed between ears. We use N0/Nπ to denote noise presented in-phase/out-of-phase between ears and S0/Sπ to denote a 500 Hz sine wave signal as in/out-of-phase. Signal detection level for the noise/signal combinations N0Sπ and NπS0 is typically 10-20 dB better than for N0S0. All combinations have the same spectrum, level, and duration of both the signal and the noise. Methods: Ten participants (5 female), age: 22-43, with N0Sπ-N0S0 MLDs greater than 10 dB, were imaged using a sparse BOLD fMRI sequence, with a 9 second gap (1 second quiet preceding stimuli). Band-pass (400-600 Hz) noise and an enveloped signal (.25 second tone burst, 50% duty-cycle) were used to create the stimuli. Brain maps of statistically significant regions were formed from a second-level analysis using SPM5. Results: The contrast NπS0- N0Sπ had significant regions of activation in the right pulvinar, corpus callosum, and insula bilaterally. The left inferior frontal gyrus had significant activation for contrasts N0Sπ-N0S0 and NπS0-N0S0. The contrast N0S0-N0Sπ revealed a region in the right insula, and the contrast N0S0-NπS0 had a region of significance in the left insula. Conclusion: Our results extend the view that the thalamus acts as a gating mechanism to enable dichotic listening, and suggest that MLD processing is accomplished through thalamic communication with the insula, which communicate across the corpus callosum to either enhance or diminish the binaural signal (depending on the MLD condition). The audibility improvement of the signal with both MLD conditions is likely reflected by activation in the left inferior frontal gyrus, a late stage in the what/where model of auditory processing. © 2012 Wack et al

    Characterization of MOS Sensors for R-32 and R-454B Leaks

    Get PDF
    Owing to concerns about climate change, many jurisdictions are phasing out high global warming potential refrigerants in HVAC&R systems. Their near-term replacements are class A2L (mildly-flammable) refrigerants. Area monitoring detectors will be required for most future residential, commercial, and industrial HVAC systems that use these refrigerants. UL Standard 60335-2-40 requires these detectors to have a set-point of 25% of the lower flammability limit (LFL) and to detect the set-point within 10 s when exposed to a gas mixture at the LFL. Inexpensive detectors that meet these requirements do not exist, which has delayed the adoption of A2L refrigerants. A technology with good potential is based on metal-oxide semiconductors (MOS). MOS detectors are tested here, considering their response to leaks of R-32 and R-454B. They are characterized here for their sensitivity, response time, false alarms from contaminants, and poisoning. The sensors have good sensitivity with a steady-state output that is linear with respect to the logarithm of concentration. The sensors fail narrowly to meet the 10 s response time requirement for both R-32 and R-454B. The sensors do not alarm when exposed to the contaminants in the standard. However, several of the contaminants do poison the sensors, at least temporarily

    Magnetic and structural data used to monitor the alloying process of mechanically alloyed Fe80Ni20

    Get PDF
    In the last decades, much attention was given to mechanical alloying as it proved to be a cheap and easy way to produce (even metastable) nanostructured alloys. Especially Fe-Ni alloys have been studied intensely due to their technological and scientific importance. The MA process, however, is not fully understood. Furthermore, remanence properties of Fe80Ni20, are not well known. In our article "Monitoring the alloying process of mechanically synthesized Fe80Ni20 through changes in magnetic properties (DOI: j.jallcom.2017.10.090, Volk et al., 2018) [1])" we investigated structural and magnetic properties of the intermediate and final alloys. Elemental Fe (99.5%) and Ni (99.7%) powders were filled in a 80 ml zirconia vials together with 3 mm zirconia milling balls and milled at 400 PRM with a planetary ball mill (Fritsch Pulverisette Premium 7). By subsampling the product at 14 different times during the process, the data presented here shows how crystalline structure (X-ray diffraction) and magnetic properties, induced as well as remanent, of the metastable Fe80Ni20 change during the mechanical synthesis

    In vitro metabolic fate of nine LSD-based new psychoactive substances and their analytical detectability in different urinary screening procedures

    Get PDF
    The market of new psychoactive substances (NPS) is characterized by a high turnover and thus provides several challenges for analytical toxicology. The analysis of urine samples often requires detailed knowledge about metabolism given that parent compounds either may be present only in small amounts or may not even be excreted. Hence, knowledge of the metabolism of NPS is a prerequisite for the development of reliable analytical methods. The main aim of this work was to elucidate for the first time the pooled human liver S9 fraction metabolism of the nine d-lysergic acid diethylamide (LSD) derivatives 1-acetyl-LSD (ALD-52), 1-propionyl-LSD (1P-LSD), 1-butyryl-LSD (1B-LSD), N6-ethyl-nor-LSD (ETH-LAD), 1-propionyl-N6-ethyl-nor-LSD (1P-ETH-LAD), N6-allyl-nor-LSD (AL-LAD), N-ethyl-N-cyclopropyl lysergamide (ECPLA), (2′S,4′S)-lysergic acid 2,4-dimethylazetidide (LSZ), and lysergic acid morpholide (LSM-775) by means of liquid chromatography coupled to high-resolution tandem mass spectrometry. Identification of the monooxygenase enzymes involved in the initial metabolic steps was performed using recombinant human enzymes and their contribution confirmed by inhibition experiments. Overall, N-dealkylation and hydroxylation, as well as combinations of these steps predominantly catalyzed by CYP1A2 and CYP3A4, were found. For ALD-52, 1P-LSD, and 1B-LSD, deacylation to LSD was observed. The obtained mass spectral data of all metabolites are essential for reliable analytical detection particularly in urinalysis and for differentiation of the LSD-like compounds as biotransformations also led to structurally identical metabolites. However, in urine of rats after the administration of expected recreational doses and using standard urine screening approaches, parent drugs or metabolites could not be detected

    Influence of Poly(L-Lactic Acid) Nanofibers and BMP-2–Containing Poly(L-Lactic Acid) Nanofibers on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Get PDF
    The aim of this study was to characterize synthetic poly-(L-lactic acid) (PLLA) nanofibers concerning their ability to promote growth and osteogenic differentiation of stem cells in vitro, as well as to test their suitability as a carrier system for growth factors. Fiber matrices composed of PLLA or BMP-2–incorporated PLLA were seeded with human mesenchymal stem cells and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and collagen I (COL-I). Furthermore, COL-I and OC deposition, as well as cell densities and proliferation, were analyzed using fluorescence microscopy. Although the presence of nanofibers diminished the dexamethasone-induced proliferation, there were no differences in cell densities or deposition of either COL-I or OC after 22 days of culture. The gene expression of ALP, OC, and COL-I decreased in the initial phase of cell cultivation on PLLA nanofibers as compared to cover slip control, but normalized during the course of cultivation. The initial down-regulation was not observed when BMP-2 was directly incorporated into PLLA nanofibers by electrospinning, indicating that growth factors like BMP-2 might survive the spinning process in a bioactive form

    Inhibition of Natural Killer Cells through Engagement of CD81 by the Major Hepatitis C Virus Envelope Protein

    Get PDF
    The immune response against hepatitis C virus (HCV) is rarely effective at clearing the virus, resulting in ∼170 million chronic HCV infections worldwide. Here we report that ligation of an HCV receptor (CD81) inhibits natural killer (NK) cells. Cross-linking of CD81 by the major envelope protein of HCV (HCV-E2) or anti-CD81 antibodies blocks NK cell activation, cytokine production, cytotoxic granule release, and proliferation. This inhibitory effect was observed using both activated and resting NK cells. Conversely, on NK-like T cell clones, including those expressing NK cell inhibitory receptors, CD81 ligation delivered a costimulatory signal. Engagement of CD81 on NK cells blocks tyrosine phosphorylation through a mechanism which is distinct from the negative signaling pathways associated with NK cell inhibitory receptors for major histocompatibility complex class I. These results implicate HCV-E2–mediated inhibition of NK cells as an efficient HCV evasion strategy targeting the early antiviral activities of NK cells and allowing the virus to establish itself as a chronic infection

    A phase I pharmacokinetic and safety study of cabazitaxel in adult cancer patients with normal and impaired renal function

    Get PDF
    PURPOSE\textbf{PURPOSE} Limited data are available on cabazitaxel pharmacokinetics in patients with renal impairment. This open-label, multicenter study assessed cabazitaxel in patients with advanced solid tumors and normal or impaired renal function. METHODS\textbf{METHODS} Cohorts A (normal renal function: creatinine clearance [CrCL] >80 mL/min/1.73 m2^{2}), B (moderate renal impairment: CrCL 30 to <50 mL/min/1.73 m2^{2}) and C (severe impairment: CrCL <30 mL/min/1.73 m(2)) received cabazitaxel 25 mg/m2^{2} (A, B) or 20 mg/m(2) (C, could be escalated to 25 mg/m2^{2}), once every 3 weeks. Pharmacokinetic parameters and cabazitaxel unbound fraction (FU_{U}) were assessed using linear regression and mixed models. Geometric mean (GM) and GM ratios (GMRs) were determined using mean CrCL intervals (moderate and severe renal impairment: 40 and 15 mL/min/1.73 m2^{2}) versus a control (90 mL/min/1.73 m2^{2}). RESULTS\textbf{RESULTS} Overall, 25 patients received cabazitaxel (median cycles: 3 [range 1-20]; Cohort A: 5 [2-13]; Cohort B: 3 [1-15]; and Cohort C: 5 [1-20]), of which 24 were eligible for pharmacokinetic analysis (eight in each cohort). For moderate and severe renal impairment versus normal renal function, GMR estimates were: clearance normalized to body surface area (CL/BSA) 0.95 (90% CI 0.80-1.13) and 0.89 (0.61-1.32); area under the curve normalized to dose (AUC/dose) 1.06 (0.88-1.27) and 1.14 (0.76-1.71); and F U 0.99 (0.94-1.04) and 0.97 (0.87-1.09), respectively. Estimated slopes of linear regression of log parameters versus log CrCL (renal impairment) were: CL/BSA 0.06 (-0.15 to 0.28); AUC/dose -0.07 (-0.30 to 0.16); and F U 0.02 (-0.05 to 0.08). Cabazitaxel safety profile was consistent with previous reports. CONCLUSIONS\textbf{CONCLUSIONS} Renal impairment had no clinically meaningful effect on cabazitaxel pharmacokinetics.This study was supported by Sanofi. Javier Garcia-Corbacho acknowledges clinical fellowship support from SEOM. Experimental Cancer Medicine Centre (ECMC) and NIHR Biomedical Research Centre (BRC) funding is also acknowledged for the Cambridge Cancer Centre

    PET imaging of the normal human auditory system: responses

    Get PDF
    Abstract The neural mechanisms involved in listening to sentences, and then detecting and verbalizing a specific word are poorly understood, but most likely involve complex neural networks. We used positron emission tomography to identify the areas of the human brain that are activated when young, normal hearing males and females were asked to listen to a sentence and repeat the last word from the Speech in Noise (SPIN) test. Listening conditions were (1) Quiet, (2) Speech, (3) Noise, and (4) SPIN with stimuli presented monaurally to either the left ear or the right ear. The least difficult listening task, Speech, resulted in bilateral activation of superior and middle temporal gyrus and pre-central gyrus. The Noise and SPIN conditions activated many of the same regions as Speech alone plus additional sites within the cerebellum, thalamus and superior/middle frontal gyri. Comparison of the SPIN condition versus Speech revealed additional activation in the right anterior lobe of the cerebellum and right medial frontal gyrus, near the cingulate. None of the left ear^right ear stimulus comparison revealed any significant differences except for the SPIN condition that showed greater activation in the left superior temporal gyrus for stimuli presented to the right ear. No gender differences were observed. These results demonstrate that repeating the last word in a sentence activates mainly auditory and motor areas of the brain when Speech is presented, whereas more difficult tasks, such as SPIN or multi-talker Noise, activate linguistic, attentional, cognitive, working memory, and motor planning areas.

    COVID-19 and emerging viral infections: The case for interferon lambda

    Get PDF
    With the first reports on coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the scientific community working in the field of type III IFNs (IFN-λ) realized that this class of IFNs could play an important role in this and other emerging viral infections. In this Viewpoint, we present our opinion on the benefits and potential limitations of using IFN-λ to prevent, limit, and treat these dangerous viral infections
    • …
    corecore