748 research outputs found
Balanced Crystalloids versus Saline in Critically Ill Adults — A Systematic Review with Meta-Analysis
BACKGROUND: The comparative efficacy and safety of balanced crystalloid solutions and saline for fluid therapy in critically ill adults remain uncertain. METHODS: We systematically reviewed randomized clinical trials (RCTs) comparing the use of balanced crystalloids with saline in critically ill adults. The primary outcome was 90-day mortality after pooling data from low-risk-of-bias trials using a random-effects model. We also performed a Bayesian meta-analysis to describe the primary treatment effect in probability terms. Secondary outcomes included the incidence of acute kidney injury (AKI), new treatment with renal replacement therapy (RRT), and ventilator-free and vasopressor-free days to day 28. RESULTS: We identified 13 RCTs, comprising 35,884 participants. From six trials (34,450 participants) with a low risk of bias, the risk ratio (RR) for 90-day mortality with balanced crystalloids versus saline was 0.96 (95% confidence interval [CI], 0.91 to 1.01; I2 = 12.1%); using vague priors, the posterior probability that balanced crystalloids reduce mortality was 89.5%. The RRs of developing AKI and of being treated with RRT with balanced crystalloids versus saline were 0.96 (95% CI, 0.89 to 1.02) and 0.95 (95% CI, 0.81 to 1.11), respectively. Ventilator-free days (mean difference, 0.18 days; 95% CI, −0.45 to 0.81) and vasopressor-free days (mean difference, 0.19 days; 95% CI, −0.14 to 0.51) were similar between groups. CONCLUSIONS: The estimated effect of using balanced crystalloids versus saline in critically ill adults ranges from a 9% relative reduction to a 1% relative increase in the risk of death, with a high probability that the average effect of using balanced crystalloids is to reduce mortality
PIONIER: a visitor instrument for the VLTI
PIONIER is a 4-telescope visitor instrument for the VLTI, planned to see its
first fringes in 2010. It combines four ATs or four UTs using a pairwise ABCD
integrated optics combiner that can also be used in scanning mode. It provides
low spectral resolution in H and K band. PIONIER is designed for imaging with a
specific emphasis on fast fringe recording to allow closure-phases and
visibilities to be precisely measured. In this work we provide the detailed
description of the instrument and present its updated status.Comment: Proceedings of SPIE conference Optical and Infrared Interferometry II
(Conference 7734) San Diego 201
Nonlinearity and disorder: Classification and stability of nonlinear impurity modes
We study the effects produced by competition of two physical mechanisms of
energy localization in inhomogeneous nonlinear systems. As an example, we
analyze spatially localized modes supported by a nonlinear impurity in the
generalized nonlinear Schr\"odinger equation and describe three types of
nonlinear impurity modes --- one- and two-hump symmetric localized modes and
asymmetric localized modes --- for both focusing and defocusing nonlinearity
and two different (attractive or repulsive) types of impurity. We obtain an
analytical stability criterion for the nonlinear localized modes and consider
the case of a power-law nonlinearity in detail. We discuss several scenarios of
the instability-induced dynamics of the nonlinear impurity modes, including the
mode decay or switching to a new stable state, and collapse at the impurity
site.Comment: 18 pages, 22 figure
Revisited experimental comparison of node-link and matrix representations
Visualizing network data is applicable in domains such as biology, engineering, and social sciences. We report the results of a study comparing the effectiveness of the two primary techniques for showing network data: node-link diagrams and adjacency matrices. Specifically, an evaluation with a large number of online participants revealed statistically significant differences between the two visualizations. Our work adds to existing research in several ways. First, we explore a broad spectrum of network tasks, many of which had not been previously evaluated. Second, our study uses a large dataset, typical of many real-life networks not explored by previous studies. Third, we leverage crowdsourcing to evaluate many tasks with many participants
Computational fluid dynamics modelling of an entire synchronous generator for improved thermal management
This study is the first in a series dedicated to investigating the airflow and thermal management of electrical machines. Owing to the temperature dependent resistive losses in the machine's windings, any improvement in cooling provides a direct reduction in losses and an increase in efficiency. This study focuses on the airflow which is intrinsically linked to the thermal behaviour of the machine as well as the windage power consumed to drive the air through the machine. A full computational fluid dynamics (CFD) model has been used to analyse the airflow around all major components of the machine. Results have been experimentally validated and investigated. At synchronous speed the experimentally tested mass flow rate and windage torque were under predicted by 4% and 7%, respectively, by the CFD. A break-down of torque by component shows that the fan consumes approximately 87% of the windage torque
Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data
Many Galactic sources of gamma rays, such as supernova remnants, are expected
to produce neutrinos with a typical energy cutoff well below 100 TeV. For the
IceCube Neutrino Observatory located at the South Pole, the southern sky,
containing the inner part of the Galactic plane and the Galactic Center, is a
particularly challenging region at these energies, because of the large
background of atmospheric muons. In this paper, we present recent advancements
in data selection strategies for track-like muon neutrino events with energies
below 100 TeV from the southern sky. The strategies utilize the outer detector
regions as veto and features of the signal pattern to reduce the background of
atmospheric muons to a level which, for the first time, allows IceCube
searching for point-like sources of neutrinos in the southern sky at energies
between 100 GeV and several TeV in the muon neutrino charged current channel.
No significant clustering of neutrinos above background expectation was
observed in four years of data recorded with the completed IceCube detector.
Upper limits on the neutrino flux for a number of spectral hypotheses are
reported for a list of astrophysical objects in the southern hemisphere.Comment: 19 pages, 17 figures, 2 table
- …