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Nonlinearity and disorder: Classification and stability of nonlinear impurity modes
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We study the effects produced by competition of two physical mechanisms of energy localization in inho-
mogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear
impurity in the generalized nonlinear Schioger equation and describe three types of nonlinear impurity
modes, one- and two-hump symmetric localized modes and asymmetric localized modes, for both focusing and
defocusing nonlinearity and two differefdttractive or repulsivetypes of impurity. We obtain an analytical
stability criterion for the nonlinear localized modes and consider the case of a power-law nonlinearity in detail.
We discuss several scenarios of the instability-induced dynamics of the nonlinear impurity modes, including
the mode decay or switching to a new stable state, and collapse at the impurity site.

DOI: 10.1103/PhysReVE.63.036601 PACS nunierd2.65.Tg, 61.72-y, 72.15.Rn, 74.80-g

I. INTRODUCTION coupling between neighboring spipks].
When both nonlinearity and disorder are present simulta-

Wave scattering by localized impuritiésr defect$ is a  neously, it is expected that competition between two differ-
fundamental problem of solid state physidd. Impurities  ent mechanisms of energy localizatigre., one, due to the
break the translational symmetry of a physical system andgelf-action of nonlinearity, and the other one, due to local-
lead to several effects such as wave reflection, resonant scétation induced by disordgmill lead to a complicated and
tering, and excitation of impurity modes, spatially localized somewhat nontrivial physical picture of localized states and
oscillatory states at the impurity sitE&]. These two kinds of  their stability. In this paper, we consider one of the examples
problems, i.e., wave scattering in inhomogeneous media ansf such a competition, and analyze different types of nonlin-
defect-supported localized modes, appear in many differerdar localized modes and their stability in the framework of
physical problems, such as the scattering of surface acoustihe generalized nonlinear Schiinger(NLS) equation with a
waves by surface defects or interfa¢8$, excitation of de-  pointlike impurity.
fect modes in superconductors in the vicinity of the twinning  The problem we analyze here has a number of important
planes[4] and highT . superconductorg5], the dynamics of physical applications ranging from the nonlinear dynamics of
the tight-binding Holstein-type models of the electron—solids[4,6,14,13 to the theory of nonlinear photonic crystals
phonon couplind6,7], light propagation in dielectric super- [8,9] and waveguide arrayd0] in optics. In application to
lattices with embedded defect lay¢B], excitation of defect the theory of electromagnetic waves, this problem describes
states in photonic crystal waveguideq, light trapping and a special case of a stratifi€dr layered dielectric medium
switching in nonuniform waveguide array$0], etc. In all  for which nonlinear guided waves and their stability has been
such cases, the impuritig®r defect$ lead to the energy analyzed during the last 20 yeddk6,17]. For other applica-
trapping and localization in the vicinity of the defects, thattions, the theory of nonlinear localized modes is less devel-
occurs in the form of spatially localized impurity modes.  oped and, in particular, only a few publicatiofis 18—2Q

When nonlinearity becomes important, it may lead to self-addressed the important issue of stability of nonlinear impu-
trapping and energy localization even in a perfecthomo-  rity modes. In this paper, we study the properties of nonlin-
geneous system in the form of intrinsic localized modes. ear impurity modes in the framework of the generalized NLS
Spatially localized modes of nonlinear systems are usuallgquation and develop, for the first time to our knowledge, a
associated with solitary wave®r solitons in continuous systematic classification and linear stability analysis of spa-
models, or discrete breathers in lattice models; and they hauélly localized impurity modes of three distinct types. Our
been a subject of intensive studies during the past y@dis results can be linked to different special cases of the theory
However, the study of nonlinear phenomena in inhomogeef nonlinear guided waves in layered dielectric media, and
neous and disordered systems is still largely an open area tiiey also provide a generalization of the theory of nonlinear
research12]. Simultaneous presence of nonlinearity and dis-impurity modes in solids, together with the analysis of their
order is associated with various dynamical processes in sostability and instability-induced dynamics, emphasizing the
ids, biological systems, and opti¢s3]. For example, non- cases where we can observe a clear evidence of competition
linearities can become important even in a harmonic latticdetween the two physical mechanisms of energy localization.
due to the interaction of an exciton with the lattice vibrations The paper is organized as follows. In Sec. Il we discuss
[14], where impurities may appear as a result of doping ofour physical model and describe three different types of non-
materials with atoms or molecules that have stronger locdinear localized modes supported by a pointlike impurity:
coupling. Such impurities can also appeafimherently non-  symmetric one- and two-hump modes and asymmetric
linearn spin-wave systems due to, e.g., a local variation of thenodes. Section Ill includes a summary of the results of the
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linear stability analysis, and it also presents the analyticahnd the Hamiltonian
criteria of the mode stability, for a general form of the NLS

equation with a nonlinear impurity. A detailed analysis of the H— J’”[ 3_¢
mode structure and stability, as well as the discussion of the X
competition between two different mechanisms of energy lo-

calization, are presented in Secs. IV-VI, for the particularNote, however, that the total momentum is not conserved
case of the power-law nonlinearity and both attractive andince the translational invariance of the mo@Bl(2) is bro-
repulsive impurities. At last, Sec. VIl discusses two differentken by the presence of the inhomogeneity.

types of the nonlinearity-induced collapse dynamics of the We look for spatially localized stationary solutions of
nonlinear modes, including collapse at the impurity site.  Egs.(1) and(2) in the standard form,

2 1(x)
- . ]—"(I’;x)dl’)dx. (4)

— o0

_ iwt
Il. MODEL AND LOCALIZED MODES P(x,H)=u(x)e'”,

We consider a general problem in which the dynamics ofvhereo>0 is the mode frequency(>0 for the mode to be
elementary excitations of a physical systéeng., phonons, exponentially localized and the real functiom(x) satisfies
magnons, etg.is described by an effective equation for the the equation:
wave-packet envelopg(x,t) [21]. When the density of such
guasiparticles becomes high enough, their interaction should
be taken into account, e.g., in the framework of the mean-
field approximation. In the simplest case, the quasiparticle
interaction and collective phenomena in an inhomogeneous et us first discuss the well-known case when the impu-
medium can be described by the nonlinear Sdimger ity is absentG(1)=0. Then, a localized solutiong(x) of

d%u
—wu+@+F(I)u+5(x)G(l)u=0. (5)

(NLS) equation for the wave-packet envelogéx,t), the reduced Eq5),
Y Y _ d?uo 2
5t g TAIXY=0, (1) ~wlot 5+ F(Up)up=0, (6)

wherel =|y|? characterizes the density of the quasiparticlesdescribes a self-trapped state in a uniform nonlinear medium.
t is time, x is the spatial coordinate, and the real functionDue to the translational symmetry, a localized solution of Eq.
F(1;x) describes both nonlinear and disordered properties af6) can be presented in the forog(x—xg), wherexg is an
the medium. We consider the case when the inhomogeneitgrbitrary position. We also note that the mode profile is sym-
is localized in a small region. Then, if the correspondingmetric, ug(x)=ug(—x), it does not contain zerogjy(x)
wavelength is much larger than the defect size, in the con>0, and it has a single hump sincki,/d|x|<0 at x#0.
tinuum limit approximation the inhomogeneity can be mod-Such a localized state is possible in a self-focusing medium
eled by a delta-function and therefore we can write in the form of a bright solitary wavéor soliton), which is

characterized by the power
Fx)=F(1)+8(x)G(1), 2

where the function (1) andG(l) characterize the proper- Po(w)ZZJO ug(x) dx. (7)
ties of the bulk medium and impurity, respectively. Hereafter

we assume that the nonlinear teff(l) does not include a |5 contrast, in a defocusing medium, spatially localized so-
constant linear part, i.eF(0)=0, as otherwise it is always |ytions of Eq.(6) do not exist. However, certain singular
possible to rescale the original E4) by introducing a new  gqutions with zero asymptotic at— + = are still possible in
function = ¢ exd —iF (O)t]. this case, and they will play an important role for construct-

The model(1),(2) appears in different physical problems ing localized impurity modes.
of the macroscopic nonlinear dynamics of solids and nonlin- When a pointlike defect is introduced into the system, the
ear optical systems. In particular, it describes a special cageanslational invariance of the model is broken at the defect
of a more general problem of the existence and stability ofocation,x=0. Nevertheless, the nonlinear modes of the in-
nonlinear guided waves in a layeréar stratified dielectric  homogeneous modéb) localized near the impurity sit&
medium, where the delta-function defect corresponds to a0 can be constructed by using the solutions of the homo-
very thin layer embedded into a nonlinear medium with ageneous equatiof6). Indeed, such a solution should satisfy
Kerr or non-Kerr responsgsee, e.g., Ref.16]); in this case  Eq. (6) on both sides of the defect, and it can therefore be
the time variablet stands for the propagation coordinate presented in the following general form,
along the layer, and is the transverse coordinate.

For spatially localized solutions, Eq4) and(2) conserve Ug(X—Xp), x=0,
the power, u(x) Ug(X—S%y), X=<0, ®)

p— f+m|<//(x)|2dx, 3) wherexy ands are yet unknown parameters. Our task now is
— to satisfy Eq.(5) at x=0 in order to define the unknown
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parameters, ands through the impurity characteristics. The 1 T I T T
first constraint follows from the field continuity at the impu- i (a) |
rity site, u(0*)=u(07). For Eq.(8) it immediately yields 08— w7 N

the conditions= = 1. Thus the parametardefines the sym- r .
metry of the localized mode, i.e., the mode is symmetric for _ 0.6~ N

s=—1 and asymmetric fos=+1. In order to derive the 8 - .

second matching condition, we integrate Eg). over an in- S o4l —

finitely small segment around the impurity poxt0 and L i

obtain the transcendental equation for the parameger 02 7 -
(19 22 %) = G(1 (o) (9) o T

dx Ko 0)Uo(Xo), -4 -2 X, 0 x, 2 4

wherel = u2(xo).

Let us discuss the general properties of the impurity
modes as localized solutions of a homogeneous medium sat i (b) i
isfying the matching conditions obtained above. Symmetric ~ 08—
modes é=—1) can be presented in the form(x) r .

=Ug(|X| —Xo), and have the power 06 —
oL .
+ oo \5/ 04 | _
P(w):zf u3(x) dx. (10) )
—Xp - 4
02 —
Using the properties of the homogeneous solitary wave so-
lution uy(x) we see that if the impurity is attractivig.e., 0 - I | -
G(l)>0] thenxy<<0. Thus the resulting symmetric profile - 2K % 2 4
u(x) is single-humpedsee Fig. 1a)] andP<P,. When the X

impurity is repulsive[i.e., G(15)<0] then x>0 and thus
the resulting profile is double-humped wiih> P, as shown
in Fig. 1(b). We note that the single-hump solution may still i (C) i
exist in a self-defocusing medium being constructed from 08
two pieces of a singular solution of the homogeneous model r T
(see beloy, whereas the two-hump solutions are possible _
only in a self-focusing medium. No)
For asymmetric modes= +1 and the left-hand side of =
Eq. (9) vanishes. Thus solutions are possible only if the im-
purity response vanishes as well, i8(l,)=0. This condi-
tion can be satisfied when the nonlinear and linear parts of
the impurity response compensate each other, i.e., for certair
values ofl . Remarkably, the profile of the asymmetric im- -4 -2 0 X, 2 4
purity mode coincides with that of a bright soliton in an X
uniform self-focusing mediumu(x)=uqy(x—Xg), and thus
P=P,. However, its position is fixed by the impurity ac- FIG. 1. Characteristic profiles of nonlinear impurity modes in a
cording to the relatiorG(1,)=0 [see Fig. 1c)]. Naturally self-focus_ing medium(a) and (b_) symmetr!c modes suppor_ted by
there always exist two degenerate asymmetric solutions cofn attractive X,<0) and repulsiveXo>0) impurity, respectively;
responding to positive and negatixg, respectively. (c) asymmetric impurity mode witho>0.

case, we call such a nonlinear mode linearly stable. On the

Ill. STABILITY ANALYSIS other hand, under the influence of small perturbations initial
_ deviations of the nonlinear mode parameters from their sta-
A. General formalism tionary values can grow exponentially; and in this case we

One of the key properties of a nonlinear localized mode iglefine the nonlinear mode as linearly unstable.
its linear stability determined by the character of the mode We consider localized modes that are square- or
dynamics under the action of small perturbations of its stal 2-integrable(have finite power ot.?-norm), and have pro-
tionary state. In general, two different scenarios of thefile functions that belong to a Hilbert space whose inner
perturbation-induced mode dynamics are possible. In the firqeroduct is thel.?-norm
case, a nonlinear mode can acquire only small distortions to
its steady_—state_ profile_a_m_d the_param_eters of a nonlin_ear {a(x),b(x)}zfm a* (x)b(x) dx, (11)
mode oscillate in the vicinity of its stationary state. In this —
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wherea* (x) denotes the complex conjugate of the functionis positive definite on the subspace of functions orthogonal to
a(x). To find the linear stability conditions we consider the u(x), which allows one to use several general theorems
evolution of a small-amplitude perturbatid(,t) of the sta- [17,23-26 to link the stability properties to the number of
tionary solution, i.e., negative eigenvalues of the operatgr, whose spectrum we
define asn(V: (i) the mode is unstable if there are twar
more negative eigenvalues, i.e., i{)<0; (i) the mode is
stable ifL, is positively definite, i.e., in{">0; and(iii) in
the intermediate case the stability depends on the slope of the
F(x,)=[0(x)—W(x) ] %+ [0* (x) +W* (x)]e" 2, fupctipn P(w)_according to the Vakhi'gov—KoIokoIo(/VK)
(13 criterion[23], i.e., the mode is stable #P/dw>0 and un-
stable otherwise. Thus to distinguish between these cases, it
and substituting Eq(12) into Eq. (1), we obtain an eigen- is sufficient to determine the signs »f" and\ (V).

Y, =[u(x)+ f(x,t)]e"t (12

Writing the perturbation in the form

value problem for the functions(x) andw(x), In general, the spectral properties of the linear opeiator
depend on the mode frequenay, and the number of its
Low=Quv, Liv=0w, (14 negative eigenvalues can change. This is associated with the

so-called critical points in the power dependeiien) for

where() is the complex spectral eigenvalue, and the localized modg17]. One type of such critical points is a

42742 1. —_r , bifurcation into two families of solutions, i.e., symmetric and
L= it w—U;, Up=Fy+ 6o, asymmetric ones, which exist for the same mode frequency.
Fo=F(U?), Fy=Fq+2u%F'(u?), Thus the stability properties of these distinct types of nonlin-
ear localized modes can be expected to be different, so we
Go=G(lg), G1=Gg+21,G’(ly). discuss them separately.

Here the prime denotes differentiation with respect to the

. . B.S tri d
argument. It follows from Eq(13) that the mode is stable if ymmetric modes

all the eigenvalue$) are real and unstable otherwise. For symmetric modes wite= —1 the operatot , has the
To proceed we reduce Eqd4) to a single equation: symmetric neutral mode with zero eigenvalue
LoLiv=0%, (15) Li(dwd|x])=0,

where stability requires all eigenvalu€s’ to be positive. It for the special value of the defect response
is straightforward to show that,=L*L~, where L==
+d/dx +u~!(du/dx), and thus one can instead consider
the auxiliary eigenvalue problem, oo (duo(x)) “td?ug(x)
- POl dx dx?
L L,LTo=0%, (16) X=Xo

17

which reduces to Eq(15) after the substitutionn=L"v. For xo>0 the profileu(x) has two humps and the neutral
Because the operatdr™ has only a single neutral mode, mode corresponds therefore to the second eigenn@é@e
v(x)=u"*(x), which is not an eigenmode of Eqd5) and  (two node$ with A\{V'=0. Thus the two-hump symmetric
(16), these two eigenvalue problems have equivalent spectiijodes are unstabléwo negative eigenvalugsFor x,<0
(see Ref[20]). Since the operatdr "L,L " is Hermitian all  the neutral mode is the nodeless ground-staf® with

H 2
eigenvalued)” of Egs. (15 and(16) are real. _ AP=0. Thus the single-hump symmetric modes are stable
The operatord; (j=1,2) are well-studied in the litera- negative eigenvalugsf G, =G¢'.

ture, in particular as a characteristic example of the spectragrI For other values of the defect respo@git follows from
theory of second-order differential operatésse Ref[22]). the spectral theorem that the eigenvalue of the neutral mode

For our problem we use two general mathematical (r-?SUItaecreases whe6,> G (deeper well and increases when
about the spectrum of the linear eigenvalue problemy, G,<GS". Therefore forx,<0 andG,<GS we have)\gl)

:)‘E;‘ng)' () the eigenvalues can be ordered B3, >0 and the modes are stable. On the other hand, due to the
>\’ wheren=0 defines the number of zeros in the COITe- gy mmetry of the potentials in the linear eigenvalue problem,
sponding eigenfunctiow’ and i) for “deeper” potential U;(x)=U;(—x), the amplitude of the first-order eigenmode
weIIs,Uj(x)BUj(x), the corresponding set of eigenvalues isvanishes at the defect location=£0), and thus its eigen-
shifted “down,” X<\, value\{") does not depend 06,. However, the inequality

Let us fist discuss the properties of the operatpwhose  A{P<A{P<A{V is always fulfilled for anyG;, and thus
spectrum we define as{”). The neutral mode of, is the  A{Y<0 if x,>0 and\ (>0 if xo<0.
stationary solution of Eq(5), sinceLyu(x)=0. Moreover, In the special case whexy=0 it is straightforward to
u(x)>0 is the ground state solution with no nodes and thereshow that the functionlu(x)/dx, which has a single zero at
foreA\(9)>\ (=0 for n>0. This means that the operatos ~ x=0, is a neutral mode df; with A\{¥=0. In Table | we
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TABLE |. Stability conditions for symmetric modes. TABLE II. Stability conditions for asymmetric modes.
Condition L, spectrum Stability Condition L, spectrum Stability
Xo>0 AH<aP<o unstable  G;>0 AH<aP<o unstable
Xo=<0, G;<G{ o=af<a® stable G,=<0, dPy/dw>0 A<o=\PY stable
%<0, G;>G¢', dP/dw>0 AH<o=AY stable G,=<0, dPy/dw<0 A<o=\PY unstable
X0=<0, G;>GY{', dP/dw<0 A<o=aP unstable

To determine the sign ok{" for G,<0 we consider,
summarize the properties of the operaltgrand the corre- without a lack of generality, the casg>0 and study the
sponding general conditions for the stability of nonlinear |0-operatortl with the potential
calized modes.

It is important to connect the spectral characteristics of - Fl[ug(x—xo)], X>Xg,
the operator,, and thus the stability properties, with the Ul(x):[ —o x<X (18
character of the power functionBl(w). To do so we notice ’ o
that at the bifurcation point, defined & w)=Py(w), the
parametex, and thus the eigenvalug changes sign. The
two-hump symmetric modes witR(w)>Py(w), for which

It is straightforward to check that the lowest eigenvalué pf
is zero with the ground state

(1) _
Xo>0 and thus)\l_ <0, are theref_ore always unstable. In _ dUg(X—Xo)/dX, X>Xo,
stead a new family of asymmetric modes emerges at the (Pgl)z
bifurcation point, whose stability properties we discuss in the 0, X<Xo.

next section.

The single-hump symmetric modése., x,<0) can only ~ For G;<0 we haveU,(x)>U,(x), and thus according to
change their stability properties through a change of sign ofne spectral theorem the eigenvalues of the corresponding
the lowest eigenvaluk{" or the sloped P/dw, according to  operators are related agV<X®. Thereforer ) is always
Table I. In order to find the critical points associated with thepegative, meaning that the VK theorem applies. We combine
transition ofA§" through zero we employ the approach de-these findings with the general stability critefi7,23—28,
veloped in Ref[17] and differentiate Eq(5) with respect to  and summarize the stability conditions in Table II.

the mode poweP, treatingw as a function ofP. This gives We note that, for a given defect resporé ), there can
us the relation exist several families of asymmetric modes each character-
ized by the intensity at the defeky, satisfying the relation
Uu(x)(dwldP)=—L4(duldP). G(lg)=0. There are always at least two solutions with the

samely but £x,. All these degenerate families have the
same power and are thus indistinguishable onRte) dia-
gram. To determine the stability we look at the bifurcation
from the symmetric modes &(w) = Py(w) (or xq=0). Per-
forming the analysis similar to that in R¢fl7], we find that
after the bifurcationG;<<0 if the branch for symmetric

The points wherelw/dP=0 oru=0 are thus critical points,
since there the operatdr; has a zero eigenvalu)egl)zo
with eigenfunctiondu/dP. It is possible to show that these
are the only critical pointf17]. Moreover, it can be demon-
strated thaG; > G{' for the branch originating from the criti- |\ 4es is above that of the asymmetric mode¥w)
cal point with the positive slopedP/dw>0, while G, >Py(w). In the opposite cas&,>0 and the asymmetric
<G{ if dP/dw<0 in the vicinity of the critical point. modes are always unstable.

Therefore the localized modes are always stable close to
such critical points. This conclusion implies, in particular,
stability of modes with a vanishing poweP—0. In this

linear limit the impurity can support a localized mode only . i
when it is attractivdi.e., G(0)>0], and the mode frequency W& now demonstrate the characteristic existence and sta-

is wo=G2(0)/4. biIi;y features of nonlinear localized impu_rity moc_;les by ap-
plying the results of Secs. Il and Il to the illustrative case of
power-law nonlinearities. In this section we consider the ana-

C. Asymmetric modes lytically obtainable results. The detailed numerical results
The profiles of asymmetric nonlinear modes coincide withare presented in Secs. V and VI.

those of solitongsinceGy=0), but the spectrum of the op-

eratorL; can become different. Only in the special c&g A. Solitons in homogeneous media

=0, there exists a first-ordépne nodé¢ neutral mode with

)‘(11):0' "?" Ll(du/dx):O(.l)Ther!, from the spegt)ral theo— special case of a homogeneous medium @ts0 and the

rems[22] it follows that A} .<O if Gl->0 and\;i’>0if 1k power-law nonlinearity

G;1<0. Thus the asymmetric mode is always unstable for

G,>0, with respect to translational shifts along thexis. F(l)=pl?, ¢>0. (19

IV. POWER-LAW NONLINEARITY

To construct the general solutions we consider first the

036601-5
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For self-focusing bulk media= + 1 and for defocusing bulk (8<0), whereas attractive nonlinearitie8$0) support lo-
mediap= —1. The profiles of the spatially localized station- calized modes at all frequencies>0.
ary solutions can be found in the form To analyze the stability properties we follow the approach

of Sec. Ill B and calculate the defect response
cosh Yo(o\Jwx), p=+1

Ug(X)=A
o(X)=Ao sinh™ Y(g\wx), p=—-1,

(20 G,=G{+2ByA%?, (25)
where the critical valu&$'=2 /o is defined from Eq(17).
. . X . From the general results summarized in Table |, we see that
well-known bright soliton of the generalized NLS equation the localized modes are always stable when the nonlinearity

that _eX|§ts for any pOS|t|ye valug of. The soluthn f_orp= is repulsive 3<0), sinceG;<G{. When the nonlinearity
—1 is singular, since bright solitons do not exist in a self—is attractive §>0), G,>GY and the VK criterion applies
defocusing medium. This singular solution will be used be- P L1 Pl PPIIES.

low to construct the profiles of thgegula) localized modes From_ Eq.(24) we obtain that the sign Gﬂ.ai /d(f) IS glver_1 _by

in the general case with an impurity. the sign 0f[2(1—_y) \/Z+ ay]. Thus we identify the cr|t|c_al
To find the soliton power in a self-focusing medium ( power y.= 1, which is half that in a homogeneous medium.

= +1) we substitute the corresponding soluti@0) into Eq. For >0 (and 8>0) the modes are therefore always stable

(7) and obtain the result for subcritical powersy<vy,. For y=1v, high-frequency
modes witho=w,=wy/(1— y,/v)? are unstable, whereas

220(1 4 g)Ue 1“%( /o) low-frequency modesd<w,) are stable. Thg opposite oc-
5 Fo(2l0)’ (21)  curs fora<0 (and 8>0): In this case only high-frequency
S modes (>w;) are stable for y<y,, whereas low-
whereTl's is the standard gamma-function. Applying the VK frequency modes are unstable. For powers above the critical
theorem[23] we find that the solitons are stable forc o, ~ ValU€, ¥=7er, all modes are unstable.
=2, because in this casP,/dw is positive. Forc=2 the

where Ag=[(1+ o) w]¥?. Solution (20) for p=+1 is the

Po(w) — w(Z—U)/Z(f

solitons are unstabledP,/dw=0) and they either collapse C. Nonlinear impurity modes
or decay[27,28. We now consider a more general case when both the bulk
medium and the defect have power-law nonlinear responses,
B. Nonlinear impurity in a linear medium as defined by Eqg19) and(22).

We now study the effects due to defect-induced localiza-
tion only, i.e., we consider the special case when a nonlinear
defect with the power-law response Substituting Eq(20) into Eq.(9) we obtain the relation:

1. Symmetric nonlinear modes

G()=a+p8l", y>0, (22) 2pw'+a+ o' (1+0)'[1-p?'=0, (26)

is embedded into a linear medium wi=0. Changing the which defines the Spatial Shl*b for all values of the mode

signs of the parameters and 8 we can describe both lin- frequencyw. HereI'= y/o and

early and nonlinearly attractive and/or repulsive impurities.

Assuming thata# 0 this parameter can be rescaledate p(w)=

+2, which we use in the following. cothiow
As bright solitons do not exist in a linear medium, asym- i

metric modes are not possible as well. Using E@.(8), We see that fofp|<1, the solutions of Eq(26) correspond

and (9) we obtain the spatial profile of the symmetric one- {0 the modes in a self-focusing mediump= +1). Note that
hump localized modes localization in a defocusing mediunp€ —1) is only sup-

ported by an attractive impurity3,>0), so thatx,<0 and

u(x)=A exp(— Volx|), A?=2Jo-a)/p, (23 P<—1.In both cases the linear Iirrmo—>—.oc corresponds
to p——1. Impurity response for a localized mode can be

tanHow,), p=+1

1/2

XO)! p:—l_ (27)

and the corresponding power, expressed in terms of the new variable,
A2 1 (2Jo—a\ Go=—2pVo,
Pi(w)=—== —(—ﬁ ) : (24) »
Jo Vo G1=Go+2BY13=(2y+1)Gy—2ya, (29)
Let us analyze the existence properties of these modes: For G¥'=—2\uw[p(1+0)—0alp],

a>0 a linear impurity mode appears at the cutoff frequency

wo=a?/4. If the nonlinearity is attractive £>0) then a  which will be useful in the following analysis.

whole family of localized modes exist with frequencies In order to determine the stability of the localized modes,
above cutoff w=wy). If the nonlinearity is repulsive £  we have to construct the power versus frequency diagram
<0) then the family exists below cutoff Qw=<wy). For  P(w). After a change of variables in E¢LO) we obtain the
a<0 no localized modes exist for repulsive nonlinearitiesgeneral expression for the power
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1 rectly from the power slope. In particular,lif<1/2 then the
f |1—y?| "t Yeqyl. nonlinearity of the bulk is effectively stronger than that of
L the defect, so that the localized modes resemble the solitons
@9 homogeneous media, which are stable #ox 2. In the
To separate the effects induced by the bulk and the impuritpPPOSIte casd, >1/2, the modes resemble the nonlinear de-
we rewrite this expression in the form: ect modes of linear media, which are stable for1. Com-
bining these results we come to the conclusion: Symmetric
P(w)=Po(w)&(p;o), (30) localized modes supported by a nonlinearly attractive impu-
rity (8>0) in a self-focusing bulk medium are stable in the
where the soliton power in homogeneous mefig(w), is  high-frequency limit ife<2 andy<1 simultaneously.
defined by Eq(21). Although bright solitons do not exist in Finally, we study the properties of high-frequency local-
defocusing homogeneous media, E@4) and(30) can still  ized modes in self-defocusing bulk media= —1). In this
be used for both types of bulk nonlinearity, i.e., for +1. case EQ.(26) has solutions foro—+o only for a
The functional&(p,o) changes monotonically with the pa- “strongly” nonlinear attractive impurity withI'>1/2 and
rameterp, so thatp(d&/dp)>0. In the linear limit whena ~ 8>0 orI'=1/2 andB> B,=2/\/1+ o (the modes can also
>0 and w—w, the mode power vanishes and thuseéxist if [=1/2, =B, anda>0, but we will not consider
£(—1;0)=0. Furthermore, for a self-focusing bulk medium this special case The corresponding modes have the same
(p=+1) the identity £(—p;o)=2—&(p:o) holds. Thus Properties as in a self-focusing bulk medium, because the
£(0:0)=1 and &(1;0)=2. The functionalé(p;o) cannot l:_)ulk nonlinearity acts only as a small _perturbatlon. In par-
be expressed in elementary functions, but must be calculatd{fular: Ed-(32) can be used to determine the mode power
numerically. (but the sign of the constar@@ is not fixed. On the other

H cr
Let us outline some general properties of the symmetriéland' according to Eq.(28 we have G,—G;
modes: Consider first linearly attractive impurities>0) f_ —ZG/E[U/ngp(i;I/_— ?%I_ZY?DO fr?r w>1, aTd there-
and the low-intensity limit when the mode frequency is close ore the mode stability follows from the power slope.
to the cutoff wg. From Eq.(26) we find the nonlinearity- 2. Asymmetric nonlinear modes
induced frequency shift

2(1+o)t

—  (2—0)20
Plw)=w p

Asymmetric modes can exist in self-focusing bulk media
w B2'(1+ o) wh ¥1+p|", <1 when the impurity response vanish&l ;) =0. This is pos-
(— - ) =[ (31  sible whena8<0 and the mode intensity at the defect site is
2(1+p), I'>1. lo=|al/B|”. Then, the spatial shift, is given by the rela-
tion

o

It follows that forI'>1 the sign of the shift depends only on
the bulk nonlinearity: the frequency is shifted up in self- cosh o wxg) =Ag/1 572, (33
focusing bulk media = +1) and down in self-defocusing ) ) )
bulk media p=—1). ForT'<1 the shift depends only on Asymmetric modes bifurcate from the syrznmetrlc modes at
the defect nonlinearity: the frequency is shifted up wigen  the bifurcation pointw,=15/(1+ o) whenAg=1, and they
>0 and down wherB<0. However, Eq(31) presents only exist for higher frequencies only. An asymmetric mode is
an asymptotic result valid at vanishingly small intensities. Aactglallyf/ a soliton trapped bﬁ/ the de_fect a]}pd ést:he;]efore only
simple graphical analysis of ER6) demonstrates that com- SF"’_‘ N Or‘7<2_' Hoyvever, t € ”apE'”@'e |7ne y the con-
petition of the defect and bulk nonlinearities f@B<0 can dition GO.(IO)._ 0] S stable if G, =2B715<0 (5‘?6 Sec.
lead to a more complicatet.g., multivaluey structure of Il C), which is satisfied for nonlinearly repulsive impurities
the power dependend® w). with 5<0.

Secqnd, we analyze th_e properties of_ high-frequency V. SELF-FOCUSING MEDIUM
modes in self-focusing medig & +1). Analysis of Eq(26) _ _ _ _ _
reveals that such modes always exist. Substituting approxi- In this section we present a detailed numerical analysis of
mate solutions fop(w) whenw— into Eq. (29) we find  the nonlinear impurity modes for power-law nonlinearities in

the power of the high_frequency modes a Self'fOCUSing bulk mediump(= + 1) The Self'defOCUSing
bulk medium is treated in Sec. VI. We term the impurity
Po(w)(l—ﬁer‘l’Z), I'sine attractive when it supports a localized mode in the linear

P(w)—1 Pi(w), I'>1/2 and B>0 32 limit («>0) and has a self-focusinttractive nonlinear

response 8>0). This case is considered in Sec. V A. The
2Py(w), I'>1/2 and <0, same impurity, but with a self-defocusing nonlinear response

) _ . . (B<0) is termed a mixed impurity that supports linear
where C is a frequency-independent positive coefficient. 'tmodes(see Sec. V B The case when the defect is repulsive
follows from Eq.(32) that for a nonlinearly repulsive defect i the linear limit (@<0) but may become attractive for
(B<0) we haveP(w)>Po(w) and thus the high-frequency |arger intensities >0) due to its nonlinear properties is the
symmetric modes have two humps and are unstable. FQhost complicated. This mixed impurity with attractive non-
nonlinearly attractive defectsg(>0) the modes have one |inearity is investigated in Sec. V C. When bathand 8 are
hump, i.e.,—1<p<O0. It is straightforward to check using negative the properties of localized modes in self-focusing
Eq. (28 that under these condition&,>Gy>G]", and  bulk media are trivial: they always have two-hump symmet-
therefore according to Table | the mode stability follows di-ric profiles and are therefore always unstable.
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1.5

Power

u(x)

0
X
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FIG. 4. Stability regions for symmetric localized modes with
a>0 andB>0 in self-focusing mediag=+1). I: the modes are
stable and exist fow> wg; II: stable modes exist only near cutoff
w=w,. Points(a) and(b) correspond to the cases shown in Figs. 2

FIG. 2. Power vs frequency diagram fgfo=1 and two char-
acteristic mode profiles corresponding to the poits and (b).
Dotted curve: poweP,(w) of impurity modes in linear bulk media.
Parametersc=1, y=1, a=2, andB=1.

and 3, respectively.

We first consider the influence of defect nonlinearities
that enhance the attractiog$ 0). In this case the asymmet-
o _ ric modes do not exist. For the symmetric localized states we
A. Attractive impurity always havex,<0 and, as follows from Eq(28), G;>G,

Let us consider self-focusing bulk medip<+1) and >Gf{', so that the VK criterion[23] applies according to
defects that support localized modes in the linear linit ( Table I. To illustrate the general results given in Sec. IV C,
>0). In this case the symmetric mode branch onRfe)  we present examples in Figs. 2 and 3, and the stability dia-
diagram always starts ai= w,, whereP vanishes. As fol- gram in Fig. 4. Localized modes always exist above cutoff,
lows from the stability analysis this point is critical, and w=wg, and the functionalP(w) is single-valued. Such a
therefore the localized modes are always stable in its closbehavior is observed because both the defect and the bulk
vicinity, see Figs. 2 and 3. However, for higher frequenciesmedium have self-focusing nonlinearities, which induce a
o the properties of the localized modes depend on the chapositive frequency shift, as mentioned earlier.
acteristics of the nonlinearity, determined by the powers The parameters for Figs. 2 and 3 correspond to qualita-
and o and the coefficienp. tively different cases. Foy/o>1/2 (Fig. 2) the defect non-
linearity is effectively stronger than the bulk nonlinearity,
and thus the modes resemble the nonlinear defect modes in
linear bulk media. Since ando do not exceed their critical

BT o]

———

Power
T
o

sk —
\

0 1

-3 0
X

FIG. 3. Power vs frequency diagram fed o=1/4. Solid and

valuesy,=1 ando.,=2 [see Fig. 4, poinfa)], all modes
should be stable. Foy/ 0<1/2, the high-frequency symmet-
ric modes resemble the solitons of homogeneous nisdia
Fig. 3b)]. Therefore these modes are unstable if the bulk
nonlinearity is supercriticab> o, [see Fig. 4.

To study the instability-induced dynamics of symmetric
localized modes we solve E¢l) numerically with slightly
perturbed modes as an initial condition. Depending on the
perturbation, two different scenarios are possible. If the
power is initially decreased, then the mode spreads out and
transforms into a lower-frequency stable mode, as shown in
Fig. 5(@. We note that this switching process is accompanied
by some power loss due to radiation. An initial increase of
the mode power can lead to collapse if the nonlinear self-
focusing dominates the linear diffraction. Figurdbshows
a collapsing mode, whose amplitude goes to infinity in a
finite time due to the effect of a supercritical bulk nonlinear-

dashed thick curves show stable and unstable modes, respectivelly, =2, even though the collapse occurs at the impurity

Thin dashed curve: soliton powe%(w). Thin dotted curve: power

site. This collapse instability was earlier investigated for uni-

P;(w) of impurity modes in linear bulk media. Modes correspond- form nonlinear medi§27], with many of the general features

ing to points(a) and (b) are shown below. Parameters=4, y

=1, «a=2, andB=0.1.

applying to the impurity modes as well. For example, the
collapsing solution typically consists of a slowly evolving
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Power

X 0.
0 L 0 L 0 L
] -4 0 4 -4 0 4 -4 0 4
X X X
t FIG. 6. Power vs frequency diagram for>o (o=1, y=2,
o a=2, B=-1, and B,=—0.21). Solid and dashed thick curves
show stable and unstable localized modes, respectively. Open
os® circle: bifurcation point from symmetri¢S) to asymmetric(AS)
X modes. Thin dashed curve: soliton povy(w). The modes cor-
<= ° responding to point$a), (b), and(c) are shown below.
(see Sec. IV A i.e., the modes are stable for<2 and un-
FIG. 5. Evolution of an unstable molEig. 3(b)] with the input ~ stable otherwise. After the bifurcation point, i.e., far
power decreaseth) or increasedb) by 0.1%. Two different sce- > wy,, the symmetric localized mode becomes two-humped
narios of the instability-induced mode dynamics are obser@d: and therefore unstable.
switching from an unstable to a stable state, @odcollapse in- In Figs. §a) and &b) we show the evolution of two-hump
duced by the bulk nonlinearity. symmetric modes when the bulk nonlinearity is sub- and
super-critical, respectively. In both cases a symmetry break-
background and a highly localized central part having aring occurs, and the mode is repelled to one side of the defect.

almost self-similar profile. In case(a) a stable asymmetric state is exciteb 0<2),
leading to a slowly decaying quasiperiodic beating. On the
B. Mixed impurity that supports linear modes other hand, if bright solitons are unstable, the mode collapses

We now consider defects that have a repulsive nonlinear-' the bulk medium as shown in Fig(t9. Note that the

ity, 8<0 (and still @>0). Due to the competition between
focusing bulk and defocusing defect nonlinearities the power 4 T T T T T T T
functional of the symmetric modes can become multivalued,

with two or three states having the same frequeiseg Figs.

6 and 7. Such states can even exist below the linear cutoff &
frequency, i.e., foro<wg. This is always possible for % 2
<o, because the branch starting at the critical péiat0 A
has a negative slogstill stable sincés,<GY"), and then the

slope changes sign as the branch goes through another criti

cal point, as shown in Fig. 7. Foy> o the initial slope is 0
positive, but then the branch can go through two critical
points, which appear iB< 8. (see Fig. 6, where

. C
e -1 | 2er-1? | ©
Bcr* |a| (2F_1)

(1+0)TAT—1)

. (39 g 06

u(x)

. . 0 1 0 L 0 L
The branch of asymmetric modes emerges at the bifurca- 4 0 4 -3 0 L5 L5 0 L5

tion point whereP(w) coincides with the power of solitons X X x

in homogeneous me_diﬁ’,o(w) (open CirCIe_s_ in Figs. 6 and_ FIG. 7. Power vs frequency diagram for<o (0=2, y=1).

7). As demonstrated in Sec. IV C the stability of asymmetricParameters and notations are the same as in Fig. 6. Dotted curve:
modes forB<<0 is the same as that of solitons in bulk mediaimpurity mode power in a linear mediur®;(w).
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FIG. 9. Power vs frequency diagram for=1, y=0.5, 8=1,
and «= —2. Notations are the same as in Fig. 6.

The stability of symmetric one-hump localized modes de-
pends on the nonlinearity characteristics. Since we have
>0 and xy<0, it follows from Eg. (28) that G;>G,
>GY, and stability is determined by the power slope ac-
RS cording to Table I. In particular, as demonstrated in Sec.

X IV C, the modes are stable in a range of frequencies unlim-

Y ited from above ifc<2 and y<1 (see, e.g., Fig. 9 This

o% o parameter region | in Fig. 12 is identical to that for-0 (see
(b) = o Fig. 4); the mode properties are also similar, because in the
- limit > wg the linear response of the defect acts as only a

FIG. 8. (a) and(b) Evolution of perturbed unstable two-hump smaII. pehr_tlurk])(atlor;OHor\]/vever,dthere IS lan |mp0rt§|nt ;j|ffer-
symmetric localized modes shown in Figgc)eand 7c), respec- (ince. while fore>0 the modes are always stable ier
tively. In (a) the mode transforms into a stable asymmetric mode; in=@o» this is not so for a linearly repulsive impurity. Al-

(b) the transition occurs to an unstable asymmetric mode, whicihough in the latter case the high-frequency modes are also
subsequently collapses in the bulk medium. unstable if the nonlinearity powers exceed critical values, we

found that for the nonlinearity parameters corresponding to

(S )

amplitude at the impurity always remains finite due to the
repulsive nonlinear response of the defect.

28 T T T T T I T

C. Mixed impurity with attractive nonlinearity

We finally consider the most complicated case of a lin-
early repulsive, but nonlinearly attractive defeet<(0, B V4
>0). Some properties of the symmetric localized modes are 4
revealed by the symmetry constraints following E¢&6) ! |
and (30). Specifically, under an inversion of the defect re- 0 10 20 30 40
sponse, &,8)—(—a,— B), the normalized shifp(x,) and ®
power P change as followsp— —p and P(w)— 2Py(w) 24 ' 8 T
— P(w). Applying this transformation to the case<0 and () (b)
B>0 and using the results obtained above, we find that the § 12F . %4 - .
branch of symmetric localized modes in théw) functional
starts at the poinP(wg) =2Pg. In the vicinity of this point 0 . 0 .
the symmetric modes are unstable becayse0 (see Figs. -6 0 6 -1 0 1
9, 10, and 1L At the bifurcation point(open circle the X x
family of asymmetric modes emerges, having the same FIG. 10. Power vs frequency diagram for=1, y=1.5, 8

power as solitons in a bulk mediurRy(w). The symmetric  =0.01, and8,,,=0.0262. Parameters and notations are the same as
modes have one-hump profiles after the bifurcation. in Fig. 9.

Power

-
P Ptle S -
-
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6 T T | T I T 8 T I T I T I I//
- -
/ Ny L - 4
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X 06 . g, 1F . o
0 X 0 . FIG. 13. ParameteB,, versus bulk power nonlinearity for
-6 0 6 -1 0 1 y=0.1(dotted, 0.5 (solid), and 0.8(dashedl
X X

FIG. 11. Power vs frequency diagram for=2.5, y=0.5, 3 ized sf[a_tesii.e., for y<<1, see region lil'in Fig. 1 and has
=3.3, andB,,=3.17. Parameters and notations are the same as i@ sufficiently strong nonlinearity3> B,. The minimum
Fig. 9. value Bnin cannot be determined analytically. Its character-

istic dependencies ot for several values oy are shown in

regions Il or Ill in Fig. 12 the modes can still be stabilized atFig. 13.
some frequencies. As demonstrated in Sec. IV C the asymmetric modes are

The first mechanism of stabilization in a bounded fre-unstable for3>0 with respect to a translational shift along
guency region above the bifurcation frequengyis realized the x axis. To study the development of this instability we
when the modes are close to stable solittfos 0<2) [see  perform numerical simulations. The results confirmed that
Fig. 10, and the strength of the defect is relatively weakthe mode is either attracted or repelled by the impurity, de-
(region Il in Fig. 12. This is possible if the nonlinearity pending on the type of perturbation, as illustrated in Figs.
coefficient does not exceed a threshold value, which can b&4(a) and 14b), respectively. These examples correspond to

calculated from the conditiord(P/dw)m:wb>0, the case of subcritical defect and bulk nonlinearities, and
thus the mode eventually transforms into a stable impurity

la| [(2—0)2% T 1) |?" mode or a moving soliton. However, for stronger nonlineari-

0<B<Bmax= (85 ties the instability induced dynamics can result in a collapse.

1+l 4ylall's(20)

On the other hand, i5>2 the modes can be stabilized by VI. SELF-DEFOCUSING MEDIUM

the Qttractive Qefect_ nonlinearity, as demon;tratgd in Fig. 11, In this section we consider self-defocusing bulk media
provided the impurity supports noncollapsing highly Iocal-(p:_l). In contrast to self-focusing bulk media investi-
gated above, bright solitons cannot exist in homogeneous
self-defocusing bulk media, and thus localized modes appear
solely due to the presence of the impurity, having always a
one-hump profile. Again we consider the different cases
separately.

2

1.5

A. Attractive impurity

First we consider attractive defects with bai~0 and
B>0. It follows from the analysis presented above that lo-
calized modes exist and are stable near the cutoff frequency,
w=w,. For defects with a purely linear responsg—0)
there exists a single branch of localized solutions on the
P(w) diagram in the region € o< wq. This case was con-

o sidered in Ref[20] for o=1.

FIG. 12. Stability regions of localized modes for impurities with ~~ Reémarkably, defects with a nonlinear response can sup-
«>0 andB>0 in self-focusing bulk media. I: the modes are stable POrt localized modes with frequencies above the linear cutoff
for frequencies above a threshotd> wy,: Il and I1I: stable local-  frequency. Indeed, as we demonstrated in Sec. IV C, the ini-
ized states can exist in a bounded frequency range. In the regidi@l slope of theP(w) functional for weakly nonlinear modes
without shading all modes are unstable. Parameter values at poinis determined by the nonlinearity of the impurity i< 1. If
(@), (b), and(c) correspond to Figs. 9, 10, and 11, respectively. ['<<1/2 the branch goes through a critical point and disap-

0.5
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FIG. 14. (@) and (b) Evolution of the perturbed asymmetric
mode shown in Fig. @). (a) Attraction by the impurity and trans-
formation into a stable symmetric modg) Repulsion by the im-
purity and transformation into a moving soliton.

pears asv—0 [see Fig. 1&c)], while the powerP remains

bounded fore<2, and is unbounded far>2. For 1/X<T FIG. 15. Power vs frequency diagrams f@ 1/2<I'<1 (o
<1 the critical point appears only f@<pg., whereg,, is =1, y=0.7, B=0.52, B,=0.603, andB,=0.533);(b) '>1 (o
defined by Eq(34) [see Fig. 18)]. =1, y=1.5, B=0.11, andB,=0.105);(c) I'<1/2 (c=3, y=1,

If the nonlinear response of the impurity is effectively and 5=0.5). Notations are the same as in Fig. 3 and2. The
stronger than that of the bulk, highly localized high- marked point in(a) corresponds to an unstable solution whose in-
frequency modes can exist. As was found in Sec. IV C thisstability dynamics is illustrated in Fig. 17.
occurs forl'>1/2. These modes have the povwes P;(w)

when w> w,, and are thus stable for<1 (region | in Fig. To clarify some features of unstable modes in this case,
16). The mode frequency is bounded from below, W€ perform numerical simulations for the mode correspond-
>wmin, for B> B,, where ing to the marked point in Fig. 18). We find that all small
perturbations result in switching to a more localized state of
| 2T —1/2r the same(uppep branch, as illustrated in Fig. 1&. How-
Bola,o,I')= 2r—1)(1+ o) | af , (36) ever, if the power is decreased below the minimum of the

upper branch, the mode evolves towards a stationary mode
of the lowest branclisee Fig. 1%)]. In this case a substan-
tial amount of power is radiated away due to the gap between
éhe two branches.

as shown in Fig. 1%). For 8< 3, the functionalP(w) has
two branches originating ab=0, with the upper branch
corresponding to the highly localized modes discusse
above. The lower branch approaches the linear |”ib)
=0 and has initially a negative slope, which changes at the
critical point for 1/2<I'<1, as shown in Fig. 1®) (consis- When both the bulk and defect have a self-defocusing
tent with the inequalityBy<B.,). nonlinear responsepE —1, 8<0) low-intensity localized

B. Mixed impurity that supports linear modes
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Power

c FIG. 18. Power vs frequency diagram for=1, y=1, a=2,

. . . . andB=—1. Dotted curve: asymptotic given by the povigfw) of
FIG. 16. Stability regions of localized modes for defects with | o4, impurity modes.

a>0 andB>0 in defocusing media. |I: modes exist and are stable

at both low and high frequencies; II: stable modes exists only closéimit w— 0, the power remains finite i&<2, but is un-

to and below the linear cutoth=w,. Points(a)—(c) correspond to  bounded otherwise. It follows from Eq28) that G; <G,
Figs. 18a)—(c), respectively. <G{', and therefore according to Table | the corresponding

o ) ) ] localized modes are always stable.
modes can still exist when the linear attractienx0) domi-

nates the nonlinear delocalization effect. In this case the
nonlinearity-induced frequency shift is negatiyeee Sec.
IV C) and the localized solutions exist for frequencies below Finally, we consider the case when localized modes do
the linear Cutoff7w< wg- The Corresponding dependence not exist in the linear limit. i.e., whea <0 andﬁ>0. As

P(w) is single-valued, as demonstrated in Fig. 18. In thewas pointed out above, the properties of localized modes
depend on the relative strength of the bulk and defect non-

linearities, characterized by the rafia We have analyzed
Eq. (26) and found that in the case of a “strong” defect with
I'>1/2 the modes exist for all frequencies>0, and corre-
spond to a single branch in ti ) diagram, which asymp-
totically approache®;(w) at high frequencies, according to
Eq. (32 [see Fig. 189)]. Thus these modes are stable above
a certain cutoffw> wg, only if the impurity supports stable
modes, i.e., fory<1l. This parameter range corresponds to
region | in the diagram shown in Fig. 20. Note that tor
>, the linear impurity response is negligible and the mode
characteristics should not depend on the sigmrofndeed,
we see that region | is the same in the cases shown in both
Fig. 16 and Fig. 20.

For I'<<1/2 (region 1l in Fig. 20 the modes only exist if
the nonlinearity of the impurity exceeds the threshold value
defined by Eq.(36), i.e., for 8>B,. Then P(w) has two
branches, which appear @at=0 and merge again at the criti-
i cal pointw., as shown in Fig. 1®). From the properties of

i the critical points discussed in Sec. Il we conclude that the
stable modes correspond {® the upper branch (@w
<w) and (i) part of the lower branch close teg, for
which the sloped P/dw is positive.

C. Mixed impurity with attractive nonlinearity

EN-)

[N~

VII. COLLAPSE DYNAMICS

A. Virial relation

b
(b) The nonlinearity-induced energy localization is a funda-
FIG. 17. Evolution of a perturbed asymmetric impurity mode mental physical problem. The localization can occur in the
corresponding to the marked point in Fig.(46 (a) Switchingto a  form of stationary nonlinear impurity modes, and it is essen-
higher-frequency mode of the same brandh.A reduction of the  tial to understand the underlying physical mechanisms lead-
power by 5% leads to transformation to a broader low-frequencyng to localized states. A very efficient way for energy local-
mode of a lower branch. ization is the so-called collaps@r “blow-up”) dynamics
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2 - | - T - In this section we briefly discuss the collapse dynamics in
(a) , the frame of our model equatiof¥),(2) and derive sufficient
conditions for collapse in the presence of an impurity. For
the sake of simplicity, we are considering the case of the
ST M e —————————— T power-|aw n0n|inearitiesy as introduced in Sec. IV C.

1 n Studying the collapse-induced effects due to a nonlinear
L j impurity, we distinguish two casesi) collapse in a bulk
medium, away from the impurity site, arii) collapse at the
impurity site. In the first case, the impurity acts similar to a
small perturbation, and thus collapse can occur if the power
0 ' ’ ' ' ' of the nonlinearity exceeds the critical value for a homoge-
o neous self-focusing.e., p= +1) bulk mediumgo,=2 [27].

We note that, for the case of a nonlinearly repulsive impurity
(e.g.,8<0) at high intensities, the maximum field amplitude
is always achieved away from the impurity site so that col-
i lapse can only occur in the bulk, see, e.g., Figp)8Collapse

at the impurity site can only take place if the impurity pos-
sesses attractive nonlinearitye., 3>0). We hereafter con-

7 sider this case.

In order to analyze the collapse conditions, we assume
that the initial profile of the impurity mode is symmetric, and
thereforey(x) = (—x) at allt=0 due to the symmetry of
Eqg. (1). Then, the effective mode widtR can be defined as

1 I 1 | 1 -
055 7 5 n follows:

|
I
15[y -

Power

0.5 -

Power

+

FIG. 19. Power vs frequency diagram for defocusing bulk media R*(t)= EJloc X?|g(x,1)[?dx. (37
with a=—-2 andB=3.(a) =1 andy=0.8;(b) 0=3, y=1, and

0=2.38. Dotted curve: asymptotic given by the poviR(w) of

linear impurity modes. We determine the temporal evolution B{t) by following

the standard proceduf@7] and derive the so-called virial

) N _ _ relation:
when, under certain conditions, nonlinear self-focusing

dominates over diffraction, leading to an unlimited growth of d2(R?)
the field intensity in a finite time. In real physical systems, P 5
the actual “blow-up” never occurs, however, the initial col- dt
lapse dynamics can be correctly described in the framework (1—7)
of the continuous model equations, as long as the corre- +48
sponding assumptions are not violated.

2—0) [+
=8H+4aly+4p E]-‘"—O';f— | 4|27+ 2dx

T’ %9

whereP andH are the power and Hamiltonian defined by
2 ' l ' l ' I s Egs.(3) and (4), respectively, whild o=|#(0,t)|? here des-
- ignates the intensity at the impurity site. Becatsand H
are conserved quantities, H§8) can be integrated when the
powers of the nonlinearities attain the critical values;
=2, vo=1, and linear defect response vanishas=0Q):

R(t)=RZ+4t2(H/P), (39

whereR is the width of the input mode, and we assume that
the initial mode profile does not have a phase modulation. If
H <0, it immediately follows that the mode width decreases
and eventually vanishes at a finite time, indicating that the
peak intensity goes to infinity since the poweris con-
served, thus the energy collapses to a single point, the impu-
FIG. 20. Stability regions for localized modes with<0 and ity site. Therefore a negative value of the Hamiltonian is a

>0 in a defocusing medium. I: the modes are stable for frequensufficient condition for collapse in this case.

cies above a certain threshold; II: localized modes can exist and be f the power of the impurity nonlinearity is enhanced, i.e.,
stable in a bounded region of frequencies. In the region withouty™ Ycr, the corresponding term on the right-hand side of Eq.
shading localized modes exist for al>0, but are unstable. The (38) becomes negative, indicating an increase in the collapse
points(a) and(b) correspond to Figs. 18) and 19b), respectively.  growth rate. Increasing the power of bulk nonlinearity above
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the critical value o> o, for p=+1, or decreasing the self- TABLE Ill. Collapse conditions.
defocusing response,< o, for p=—1, we observe a simi-

lar effect. In all these cases, the relatiBi<0 remains a 'MPurity response Bulk nonlinearity Collapse
sufficient condition for collapse. The same argument holds,pjtrary p=+1 ando=2 bulk
for a defect with linearly repulsive response<0. On the
other hand, as we have demonstrated in the previous S€G~.0 andy=1 p=+1
tions, a Ilngarly attractlve_ Qefect can suppo_rt stable localized p=—1 ando<2y impurity
modes which do not exhibit collapse. In this case, and mor _ _
>2/\J1+ 0 andy=1 p=—1 andy=28
generally when at least one of the last three terms on th ~0 andve1 — 11 ando=2
right-hand side of Eq(38) becomes positive, we cannot di- L4 P -
rectly use the virial relation to predict the collapse condi-
tions. B<0 and/ory<1 p=—1 and/oro<2 does not occur
B>0 p=—1ando>2vy

B. Collapse conditions

In order to predict whether collapse is possible for arbi-3 standard nonlinear Kerr medium, i.e., whem y=1, as
trary values of the nonlinearity parameters we may emplojyemonstrated in Fig. 24). The final stage of self-focusing,
the_ connectiqn between Fhe collapse dynamics and the propreceding the “blow-up,” should be described by modified
erties of stationary localized modes. First, we note that folpquations that take into account some additional physical
the stationary solutions the right-hand side of E88) is  effects which can no longer be neglected when the collapse
identical zero. For the critical case a perturbation of the soig approached. Below, we consider two possible mechanisms
lution that maked negative will result in a collapse. Thus for such a collapse suppression.
the collapse may occur when the high-frequency symmetric The first example is self-focusing of spatial nonlinear
localized modes are unstable. Indeed, in the limit of highyyided optical modes supported by a thin nonlinear wave-
intensities we can neglect the linear impurity response byyide embedded in a bulk Kerr medium. When the field lo-
taking =0, and then an exact collapsing solution can becalization becomes very high, the delta-function can no
obtained(at ¢=2 andy=1) in the form: longer be used to approximate the layer response, and then

S0 = YN (D) UM (1)x]e XD the nonlinear response should be modified as follows
(40) I, [x|>d/2

6(x,t)=wC\(t)—x2\(t)/(4C), Fix)=4{~ -~ (41)
a+Bl, |x|=d/2,
where\ (t)=C(t,—t) %, Cis an arbitrary positive constant,

to is the collapse time, and(x) is the profile of a stationary -\ hereq is the layer width, and the layer response parameters

localized mode with the frequenay. Although the solution 56 rejated to those used in the delta-function approximation,

(40) is unstable and therefore does not describe the actual , ~ .
collapse dynamics, it demonstrates a link between the staofd_a and Sd=p. As can be seen from Fig. @), a de-

tionary modes and the collapse phenomenon. Moreover, fof cs€ of the mode width and a growth of the peak amplitude

a homogeneous self-focusing medium it was proved that a top when the energy gets localized inside the nonlinear

unstable soliton will collapse if its power is slightly in- ay'irs. the second example. we study the enerav localization
creasedsee, e.g., Ref.29]). Then, we arrive at the follow- in an intrinsically discret?a s'ystem suz:/h asa wa%/)(/eguide array
ing statement: Collapse at the nonlinearly attractive |mpur|tyIt has been demonstrated that in homogeneous lattices the

can be observed if and only if the stationary symmetric 'm_collapse and the infinite growth of the peak amplitude is

purity modes exist in the limit of high frequencies and thelralways suppressd@0]. This happens due to the presence of

power is bounded from above, i.eB(w— +%°)<P .y, 7 ok
. .__a minimal transverse scale, the characteristic disténioe-
whereP .« iS @ constant. We note, however, that the station- . . .
. . tween the lattice sites or, for the present example, the width
ary modes themselves are not necessarily unstable in the cas

with the critical power of the impurity nonlinearity, as their o the individual waveguides in the array. Therefore when

ower mav asvmptotically approach a constant from belo the width of the localized mode becomes comparable tuith
P y asymptotically app . “he evolution can no longer be described in the framework of
(see the example in Fig)2Finally, using the mode proper- h . LI heref h iainal model
ties derived in Sec. IV C, we determine the parameter re'E € continuum approximation. Therefore the original mode
. i ’ (1) should be modified to take the form of the discrete NLS-
gions where collapse can occ(as before, we do not con- tvoe equation:
sider the special casp=-1, 0=2vy, f=2/{1+o, and ype €q '
a>0), and summarize these results in Table IlI.

i&wn n ((/fn+1+(/ln—1_2¢n)
C. Collapse suppression at 2h?

+F(ly;n) =0, (42

The infinite growth of the field amplitude that results from
the collapse dynamics would not occur in a real physicawheren is the site number. An example of the energy local-
system. However, in the framework of the mod#),(2) we ization in a discrete system is presented in FigcRIWhen
observe that collapse can be induced by an impurity even ithe mode becomes narrow, its confinement is defined by the
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FIG. 22. Evolution of the field intensity at the nonlinear impu-
rity corresponding to the plots shown in Fig. (3] solid; Fig.
21(b), dotted; and Fig. 2t), dashed, respectively.

and thus the observation of collapse suppression completely
agrees with our general criterion introduced in Sec. VII B.

VIIl. CONCLUSIONS

We have analyzed spatially localized nonlinear modes
supported by a pointlike impurity, in the framework of the
generalized nonlinear Schiinger equation. We have con-
sidered three possible types of such nonlinear impurity
modes, i.e., symmetric one- and two-hump modes and asym-
metric one-hump mode, and described their regions of exis-
tence and stability, for both focusing and defocusing nonlin-
earity of a bulk medium and two differer(attractive or
repulsive types of the impurity. In particular, we have ob-
tained an analytical stability criterion for nonlinear localized
modes based on the results of the linear stability analysis of
the generalized NLS equation. For more specific physical
applications, we have presented a detailed analysis of the
nonlinear impurity modes and their stability in the case of
the power-law nonlinearities in both the medium and defect,
and discussed several scenarios of the instability-induced dy-
namics of the nonlinear impurity modes. In particular, we
have described a novel physical mechanism of the energy
localization due to the impurity-induced collapse of a non-
linear mode at the defect site, which can occur when the
power of nonlinearity in the defect exceeds a critical value
(i.e., y=1); this effect can be observed for the Kerr medium

FIG. 21. Comparison of different types of the collapse-inducedas well.
dynamics.(a) Impurity-induced collapse, the continuum mod#) The problem we have analyzed above has a number of
for a self-focusing Kerr mediumo=vy=1, a=2, and8=0.55);  important physical applications ranging from the nonlinear
(b) Collapse suppression for a layer of a finite width=0.02); and  dynamics of solids to the theory of nonlinear photonic crys-
(c) Collapse suppression due to the model discretertes€(02). tals and waveguide arrays in nonlinear optics. In particular,

our results can be linked to different special cases of the
discreteness, and the final state corresponds to breatherlikegeory of nonlinear guided waves in layered dielectric media,
oscillations near a stable stationary solution of a discreteand they also provide a generalization of the theory of non-
model. linear impurity modes in solids, together with a systematic

Finally, we note that the initial stage of the collapse-classification of nonlinear impurity modes and the analysis
induced dynamics is the same for all three different modelspf the mode stability and its instability-induced dynamics.
as is clearly seen in Fig. 22. It is also important to mentionAdditionally, this problem can be considered as one of the
that the power of the high-frequency stationary localized sofirst steps towards a deeper understanding of the competition
lutions of the modified model&!l1),(42) is no longer limited, between two different physical mechanisms of energy local-
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