898 research outputs found

    (B-L) Symmetry vs. Neutrino Seesaw

    Full text link
    We compute the effective coupling of the Majoron to W bosons at \cO(\hbar) by evaluating the matrix element of the (B-L) current between the vacuum and a W+WW^+W^- state. The (B-L) anomaly vanishes, but the amplitude does not vanish as a result of a UV finite and non-local contribution which is entirely due to the mixing between left-chiral and right-chiral neutrinos. The result shows how anomaly-like couplings may arise in spite of the fact that the (B-L) current remains exactly conserved to all orders in \hbar, lending additional support to our previous proposal to identify the Majoron with the axion.Comment: 13 pages, 1 figure, with additional explanations and clarification

    Corporate governance compliance and disclosure in the banking sector: using data from Japan

    Get PDF
    Using regression model this study investigates which characteristics of a bank is associated with the extent of corporate governance disclosure in Japan. The findings suggest that on average 8 banks out of a sample of 46 disclose optimal corporate governance information. The regression model results reveal in general that non-executive directors, cross-ownership, capital adequacy ratio and type of auditors are associated with the extent of corporate governance disclosure. Of these four variables, non-executive directors have a more significant impact on the extent of disclosure contrary to total assets and audit firms of banks in the context of Japan. The findings of this paper are relevant for corporate regulators, professional associations and developers of corporate governance code when designing or updating corporate governance code

    A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations

    Full text link
    We interpret reported hints of a Standard Model Higgs boson at ~ 125 GeV in terms of high-scale supersymmetry breaking with a shift symmetry in the Higgs sector. More specifically, the Higgs mass range suggested by recent LHC data extrapolates, within the (non-supersymmetric) Standard Model, to a vanishing quartic Higgs coupling at a UV scale between 10^6 and 10^18 GeV. Such a small value of lambda can be understood in terms of models with high-scale SUSY breaking if the Kahler potential possesses a shift symmetry, i.e., if it depends on H_u and H_d only in the combination (H_u+\bar{H}_d). This symmetry is known to arise rather naturally in certain heterotic compactifications. We suggest that such a structure of the Higgs Kahler potential is common in a wider class of string constructions, including intersecting D7- and D6-brane models and their extensions to F-theory or M-theory. The latest LHC data may thus be interpreted as hinting to a particular class of compactifications which possess this shift symmetry.Comment: v2: References added. v3: References added, published versio

    Vacuum stability, neutrinos, and dark matter

    Full text link
    Motivated by the discovery hint of the Standard Model (SM) Higgs mass around 125 GeV at the LHC, we study the vacuum stability and perturbativity bounds on Higgs scalar of the SM extensions including neutrinos and dark matter (DM). Guided by the SM gauge symmetry and the minimal changes in the SM Higgs potential we consider two extensions of neutrino sector (Type-I and Type-III seesaw mechanisms) and DM sector (a real scalar singlet (darkon) and minimal dark matter (MDM)) respectively. The darkon contributes positively to the β\beta function of the Higgs quartic coupling λ\lambda and can stabilize the SM vacuum up to high scale. Similar to the top quark in the SM we find the cause of instability is sensitive to the size of new Yukawa couplings between heavy neutrinos and Higgs boson, namely, the scale of seesaw mechanism. MDM and Type-III seesaw fermion triplet, two nontrivial representations of SU(2)LSU(2)_{L} group, will bring the additional positive contributions to the gauge coupling g2g_{2} renormalization group (RG) evolution and would also help to stabilize the electroweak vacuum up to high scale.Comment: 18 pages, 15 figures; published versio

    Generalised CP and Δ(6n2)\Delta (6n^2) Family Symmetry in Semi-Direct Models of Leptons

    Get PDF
    We perform a detailed analysis of Δ(6n2)\Delta (6n^2) family symmetry combined with a generalised CP symmetry in the lepton sector, breaking to different remnant symmetries GνG_{\nu} in the neutrino and GlG_{l} in the charged lepton sector, together with different remnant CP symmetries in each sector. We discuss the resulting mass and mixing predictions for Gν=Z2G_{\nu}=Z_2 with Gl=K4,Zp,p>2G_{l}=K_4,Z_p,p>2 and Gν=K4G_{\nu}=K_4 with Gl=Z2G_{l}=Z_2. All cases correspond to the preserved symmetry smaller than the full Klein symmetry, as in the semi-direct approach, leading to predictions which depend on a single undetermined real parameter, which mainly determines the reactor angle. We focus on five phenomenologically allowed cases for which we present the resulting predictions for the PMNS parameters as a function of nn, as well as the predictions for neutrinoless double beta decay.Comment: 65 pages, 19 figures, and the predictions for neutrinoless double beta decay are update
    corecore