898 research outputs found
(B-L) Symmetry vs. Neutrino Seesaw
We compute the effective coupling of the Majoron to W bosons at \cO(\hbar)
by evaluating the matrix element of the (B-L) current between the vacuum and a
state. The (B-L) anomaly vanishes, but the amplitude does not vanish
as a result of a UV finite and non-local contribution which is entirely due to
the mixing between left-chiral and right-chiral neutrinos. The result shows how
anomaly-like couplings may arise in spite of the fact that the (B-L) current
remains exactly conserved to all orders in , lending additional support
to our previous proposal to identify the Majoron with the axion.Comment: 13 pages, 1 figure, with additional explanations and clarification
Corporate governance compliance and disclosure in the banking sector: using data from Japan
Using regression model this study investigates which characteristics of a bank is associated with the extent of corporate governance disclosure in Japan. The findings suggest that on average 8 banks out of a sample of 46 disclose optimal corporate governance information. The regression model results reveal in general that non-executive directors, cross-ownership, capital adequacy ratio and type of auditors are associated with the extent of corporate governance disclosure. Of these four variables, non-executive directors have a more significant impact on the extent of disclosure contrary to total assets and audit firms of banks in the context of Japan. The findings of this paper are relevant for corporate regulators, professional associations and developers of corporate governance code when designing or updating corporate governance code
A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations
We interpret reported hints of a Standard Model Higgs boson at ~ 125 GeV in
terms of high-scale supersymmetry breaking with a shift symmetry in the Higgs
sector. More specifically, the Higgs mass range suggested by recent LHC data
extrapolates, within the (non-supersymmetric) Standard Model, to a vanishing
quartic Higgs coupling at a UV scale between 10^6 and 10^18 GeV. Such a small
value of lambda can be understood in terms of models with high-scale SUSY
breaking if the Kahler potential possesses a shift symmetry, i.e., if it
depends on H_u and H_d only in the combination (H_u+\bar{H}_d). This symmetry
is known to arise rather naturally in certain heterotic compactifications. We
suggest that such a structure of the Higgs Kahler potential is common in a
wider class of string constructions, including intersecting D7- and D6-brane
models and their extensions to F-theory or M-theory. The latest LHC data may
thus be interpreted as hinting to a particular class of compactifications which
possess this shift symmetry.Comment: v2: References added. v3: References added, published versio
Vacuum stability, neutrinos, and dark matter
Motivated by the discovery hint of the Standard Model (SM) Higgs mass around
125 GeV at the LHC, we study the vacuum stability and perturbativity bounds on
Higgs scalar of the SM extensions including neutrinos and dark matter (DM).
Guided by the SM gauge symmetry and the minimal changes in the SM Higgs
potential we consider two extensions of neutrino sector (Type-I and Type-III
seesaw mechanisms) and DM sector (a real scalar singlet (darkon) and minimal
dark matter (MDM)) respectively. The darkon contributes positively to the
function of the Higgs quartic coupling and can stabilize the
SM vacuum up to high scale. Similar to the top quark in the SM we find the
cause of instability is sensitive to the size of new Yukawa couplings between
heavy neutrinos and Higgs boson, namely, the scale of seesaw mechanism. MDM and
Type-III seesaw fermion triplet, two nontrivial representations of
group, will bring the additional positive contributions to the gauge coupling
renormalization group (RG) evolution and would also help to stabilize
the electroweak vacuum up to high scale.Comment: 18 pages, 15 figures; published versio
Proceedings of the 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (FLASY12)
These are the proceedings of the 2nd Workshop on Flavor Symmetries and
Consequences in Accelerators and Cosmology, held 30 June 2012 - 4 July 2012,
Dortmund, Germany.Comment: Order 400 pages, several figures including the group picture v2:
corrected author list and contributio
Generalised CP and Family Symmetry in Semi-Direct Models of Leptons
We perform a detailed analysis of family symmetry combined
with a generalised CP symmetry in the lepton sector, breaking to different
remnant symmetries in the neutrino and in the charged lepton
sector, together with different remnant CP symmetries in each sector. We
discuss the resulting mass and mixing predictions for with
and with . All cases correspond to
the preserved symmetry smaller than the full Klein symmetry, as in the
semi-direct approach, leading to predictions which depend on a single
undetermined real parameter, which mainly determines the reactor angle. We
focus on five phenomenologically allowed cases for which we present the
resulting predictions for the PMNS parameters as a function of , as well as
the predictions for neutrinoless double beta decay.Comment: 65 pages, 19 figures, and the predictions for neutrinoless double
beta decay are update
- …