Abstract

We perform a detailed analysis of Δ(6n2)\Delta (6n^2) family symmetry combined with a generalised CP symmetry in the lepton sector, breaking to different remnant symmetries GνG_{\nu} in the neutrino and GlG_{l} in the charged lepton sector, together with different remnant CP symmetries in each sector. We discuss the resulting mass and mixing predictions for Gν=Z2G_{\nu}=Z_2 with Gl=K4,Zp,p>2G_{l}=K_4,Z_p,p>2 and Gν=K4G_{\nu}=K_4 with Gl=Z2G_{l}=Z_2. All cases correspond to the preserved symmetry smaller than the full Klein symmetry, as in the semi-direct approach, leading to predictions which depend on a single undetermined real parameter, which mainly determines the reactor angle. We focus on five phenomenologically allowed cases for which we present the resulting predictions for the PMNS parameters as a function of nn, as well as the predictions for neutrinoless double beta decay.Comment: 65 pages, 19 figures, and the predictions for neutrinoless double beta decay are update

    Similar works