4,631 research outputs found

    Vitality, Language Use, and Life Satisfaction : A Study of Bilingual Hungarian Adolescents Living in Romania

    Get PDF
    This study examined the relationship between objective and subjective vitality, in-group language use, and life satisfaction among two groups of bilingual Hungarians adolescents living in Romania: a low objective vitality group from Cluj-Napoca/Kolozsvar, where Hungarians are the demographic minority, and a high objective vitality group from Sfantu Gheorghe/Sepsiszentgyorgy, where Hungarians are the demographic majority. Consistent with predictions, the high objective vitality group reported higher subjective Hungarian vitality, lower subjective Romanian vitality, more frequent use of the Hungarian language, and higher life satisfaction, compared with the low objective vitality group. The effects of objective vitality on language use were partially mediated by subjective Romanian (but not Hungarian) vitality. Conversely, the effects of objective vitality on life satisfaction were fully mediated by subjective Hungarian (but not Romanian) vitality.Peer reviewe

    Systemic inflammatory response syndrome after major abdominal surgery predicted by early upregulation of TLR4 and TLR5

    Get PDF
    OBJECTIVES To study innate immune pathways in patients undergoing hepatopancreaticobiliary surgery to understand mechanisms leading to enhanced inflammatory responses and identifying biomarkers of adverse clinical consequences. BACKGROUND Patients undergoing major abdominal surgery are at risk of life-threatening systemic inflammatory response syndrome (SIRS) and sepsis. Early identification of at-risk patients would allow tailored postoperative care and improve survival. METHODS Two separate cohorts of patients undergoing major hepatopancreaticobiliary surgery were studied (combined n = 69). Bloods were taken preoperatively, on day 1 and day 2 postoperatively. Peripheral blood mononuclear cells and serum were separated and immune phenotype and function assessed ex vivo. RESULTS Early innate immune dysfunction was evident in 12 patients who subsequently developed SIRS (postoperative day 6) compared with 27 who did not, when no clinical evidence of SIRS was apparent (preoperatively or days 1 and 2). Serum interleukin (IL)-6 concentration and monocyte Toll-like receptor (TLR)/NF-κB/IL-6 functional pathways were significantly upregulated and overactive in patients who developed SIRS (P < 0.0001). Interferon α-mediated STAT1 phosphorylation was higher preoperatively in patients who developed SIRS. Increased TLR4 and TLR5 gene expression in whole blood was demonstrated in a separate validation cohort of 30 patients undergoing similar surgery. Expression of TLR4/5 on monocytes, particularly intermediate CD14CD16 monocytes, on day 1 or 2 predicted SIRS with accuracy 0.89 to 1.0 (areas under receiver operator curves). CONCLUSIONS These data demonstrate the mechanism for IL-6 overproduction in patients who develop postoperative SIRS and identify markers that predict patients at risk of SIRS 5 days before the onset of clinical signs

    A lesson on interrogations from detainees: Predicting self-reported confessions and cooperation

    Get PDF
    The ability to predict confessions and cooperation from the elements of an interrogation was examined. Incarcerated men (N = 100) completed a 50-item questionnaire about their most recent police interrogation, and regression analyses were performed on self-reported decisions to confess and cooperate. Results showed that the likelihood of an interrogation resulting in a confession was greatest when evidence strength and score on a humanitarian interviewing scale were high, and when the detainee had few previous convictions or did not seek legal advice. We also found that the level of cooperation was greatest when the humanitarian interviewing score was high, and when previous convictions were low. The implications of the findings for interrogation practices are discussed

    Joubert syndrome: genotyping a Northern European patient cohort

    No full text
    Joubert syndrome (JBS) is a rare neurodevelopmental disorder belonging to the group of ciliary diseases. JBS is genetically heterogeneous, with >20 causative genes identified to date. A molecular diagnosis of JBS is essential for prediction of disease progression and genetic counseling. We developed a targeted next-generation sequencing (NGS) approach for parallel sequencing of 22 known JBS genes plus 599 additional ciliary genes. This method was used to genotype a cohort of 51 well-phenotyped Northern European JBS cases (in some of the cases, Sanger sequencing of individual JBS genes had been performed previously). Altogether, 21 of the 51 cases (41%) harbored biallelic pathogenic mutations in known JBS genes, including 14 mutations not previously described. Mutations in C5orf42 (12%), TMEM67 (10%), and AHI1 (8%) were the most prevalent. C5orf42 mutations result in a purely neurological Joubert phenotype, in one case associated with postaxial polydactyly. Our study represents a population-based cohort of JBS patients not enriched for consanguinity, providing insight into the relative importance of the different JBS genes in a Northern European population. Mutations in C5orf42 are relatively frequent (possibly due to a Dutch founder mutation) and mutations in CEP290 are underrepresented compared with international cohorts. Furthermore, we report a case with heterozygous mutations in CC2D2A and B9D1, a gene associated with the more severe Meckel–Gruber syndrome that was recently published as a potential new JBS gene, and discuss the significance of this finding

    Localization of Events in Space-Time

    Full text link
    The present paper deals with the quantum coordinates of an event in space-time, individuated by a quantum object. It is known that these observables cannot be described by self-adjoint operators or by the corresponding spectral projection-valued measure. We describe them by means of a positive-operator-valued (POV) measure in the Minkowski space-time, satisfying a suitable covariance condition with respect to the Poincare' group. This POV measure determines the probability that a measurement of the coordinates of the event gives results belonging to a given set in space-time. We show that this measure must vanish on the vacuum and the one-particle states, which cannot define any event. We give a general expression for the Poincare' covariant POV measures. We define the baricentric events, which lie on the world-line of the centre-of-mass, and we find a simple expression for the average values of their coordinates. Finally, we discuss the conditions which permit the determination of the coordinates with an arbitrary accuracy.Comment: 31 pages, latex, no figure

    Modelling the spatial distribution of DEM Error

    Get PDF
    Assessment of a DEM’s quality is usually undertaken by deriving a measure of DEM accuracy – how close the DEM’s elevation values are to the true elevation. Measures such as Root Mean Squared Error and standard deviation of the error are frequently used. These measures summarise elevation errors in a DEM as a single value. A more detailed description of DEM accuracy would allow better understanding of DEM quality and the consequent uncertainty associated with using DEMs in analytical applications. The research presented addresses the limitations of using a single root mean squared error (RMSE) value to represent the uncertainty associated with a DEM by developing a new technique for creating a spatially distributed model of DEM quality – an accuracy surface. The technique is based on the hypothesis that the distribution and scale of elevation error within a DEM are at least partly related to morphometric characteristics of the terrain. The technique involves generating a set of terrain parameters to characterise terrain morphometry and developing regression models to define the relationship between DEM error and morphometric character. The regression models form the basis for creating standard deviation surfaces to represent DEM accuracy. The hypothesis is shown to be true and reliable accuracy surfaces are successfully created. These accuracy surfaces provide more detailed information about DEM accuracy than a single global estimate of RMSE

    Comparative performance of some popular ANN algorithms on benchmark and function approximation problems

    Full text link
    We report an inter-comparison of some popular algorithms within the artificial neural network domain (viz., Local search algorithms, global search algorithms, higher order algorithms and the hybrid algorithms) by applying them to the standard benchmarking problems like the IRIS data, XOR/N-Bit parity and Two Spiral. Apart from giving a brief description of these algorithms, the results obtained for the above benchmark problems are presented in the paper. The results suggest that while Levenberg-Marquardt algorithm yields the lowest RMS error for the N-bit Parity and the Two Spiral problems, Higher Order Neurons algorithm gives the best results for the IRIS data problem. The best results for the XOR problem are obtained with the Neuro Fuzzy algorithm. The above algorithms were also applied for solving several regression problems such as cos(x) and a few special functions like the Gamma function, the complimentary Error function and the upper tail cumulative χ2\chi^2-distribution function. The results of these regression problems indicate that, among all the ANN algorithms used in the present study, Levenberg-Marquardt algorithm yields the best results. Keeping in view the highly non-linear behaviour and the wide dynamic range of these functions, it is suggested that these functions can be also considered as standard benchmark problems for function approximation using artificial neural networks.Comment: 18 pages 5 figures. Accepted in Pramana- Journal of Physic

    Validation and Initial Characterization of the Long Period Planet Kepler-1654 b

    Get PDF
    Fewer than 20 transiting Kepler planets have periods longer than one year. Our early search of the Kepler light curves revealed one such system, Kepler-1654 b (originally KIC~8410697b), which shows exactly two transit events and whose second transit occurred only 5 days before the failure of the second of two reaction wheels brought the primary Kepler mission to an end. A number of authors have also examined light curves from the Kepler mission searching for long period planets and identified this candidate. Starting in Sept. 2014 we began an observational program of imaging, reconnaissance spectroscopy and precision radial velocity measurements which confirm with a high degree of confidence that Kepler-1654 b is a {\it bona fide} transiting planet orbiting a mature G2V star (Teff=5580_{eff}= 5580K, [Fe/H]=-0.08) with a semi-major axis of 2.03 AU, a period of 1047.84 days and a radius of 0.82±\pm0.02 RJup_{Jup}. Radial Velocity (RV) measurements using Keck's HIRES spectrometer obtained over 2.5 years set a limit to the planet's mass of <0.5 (3σ<0.5\ (3\sigma) MJup_{Jup}. The bulk density of the planet is similar to that of Saturn or possibly lower. We assess the suitability of temperate gas giants like Kepler-1654b for transit spectroscopy with the James Webb Space Telescope since their relatively cold equilibrium temperatures (Tpl∼200_{pl}\sim 200K) make them interesting from the standpoint of exo-planet atmospheric physics. Unfortunately, these low temperatures also make the atmospheric scale heights small and thus transmission spectroscopy challenging. Finally, the long time between transits can make scheduling JWST observations difficult---as is the case with Kepler-1654b.Comment: accepted to Astronomical Journa
    • …
    corecore