89 research outputs found

    Successful unrelated umbilical cord blood transplantation for Shwachman-Diamond Syndrome

    Get PDF

    Magnetic inhomogeneities in the quadruple perovskite manganite [Y2βˆ’x_{2-x}Mnx_x]MnMnMn4_4O12_{12}

    Full text link
    A combination of competing exchange interactions and substitutional disorder gives rise to magnetic inhomogeneities in the [Y2βˆ’x_{2-x}Mnx_x]MnMnMn4_4O12_{12} x=0.23x = 0.23 and x=0.16x = 0.16 quadruple perovskite manganites. Our neutron powder scattering measurements show that both the x=0.23x = 0.23 and x=0.16x = 0.16 samples separate into two distinct magnetic phases; below T1_{1} = 120 Β±\pm 10 K the system undergoes a transition from a paramagnetic phase to a phase characterised by short range antiferromagnetic clusters contained in a paramagnetic matrix, and below T2_{2} ∼\sim 65 K, the system is composed of well correlated long range collinear ferrimagnetic order, punctuated by short range antiferromagnetic clusters. A sharp increase in the antiferromagnetic phase fraction is observed below ∼\sim 33 K, concomitant with a decrease in the ferrimagnetic phase fraction. Our results demonstrate that the theoretically proposed AFM phase is stabilised in the [Y2βˆ’x_{2-x}Mnx_x]MnMnMn4_4O12_{12} manganites in the presence of dominant B-B exchange interactions, as predicted.Comment: 12 pages, 6 figure

    MicroRNA 128a Increases Intracellular ROS Level by Targeting Bmi-1 and Inhibits Medulloblastoma Cancer Cell Growth by Promoting Senescence

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate cell homeostasis by inhibiting translation or degrading mRNA of target genes, and thereby can act as tumor suppressor genes or oncogenes. The role of microRNAs in medulloblastoma has only recently been addressed. We hypothesized that microRNAs differentially expressed during normal CNS development might be abnormally regulated in medulloblastoma and are functionally important for medulloblastoma cell growth. METHODOLOGY AND PRINCIPAL FINDINGS: We examined the expression of microRNAs in medulloblastoma and then investigated the functional role of one specific one, miR-128a, in regulating medulloblastoma cell growth. We found that many microRNAs associated with normal neuronal differentiation are significantly down regulated in medulloblastoma. One of these, miR-128a, inhibits growth of medulloblastoma cells by targeting the Bmi-1 oncogene. In addition, miR-128a alters the intracellular redox state of the tumor cells and promotes cellular senescence. CONCLUSIONS AND SIGNIFICANCE: Here we report the novel regulation of reactive oxygen species (ROS) by microRNA 128a via the specific inhibition of the Bmi-1 oncogene. We demonstrate that miR-128a has growth suppressive activity in medulloblastoma and that this activity is partially mediated by targeting Bmi-1. This data has implications for the modulation of redox states in cancer stem cells, which are thought to be resistant to therapy due to their low ROS states

    Increased sensitivity for detecting malaria parasites in human umbilical cord blood using scaled-up DNA preparation

    Get PDF
    BACKGROUND: All mothers donating umbilical cord blood units to the NHS cord blood bank undergo an assessment for the likelihood of prior exposure to malaria infection. Those deemed at risk due to a history of travel to, or residence in, malaria endemic regions are screened serologically to detect anti-malaria antibodies. A positive result excludes the use of the cord blood for transplant therapy unless a risk assessment can ensure that malaria transmission is extremely unlikely. This paper details the screening of cord blood units from malaria serology positive mothers to detect malaria parasite DNA using a highly sensitive nested PCR. METHODS: Uninfected blood from a healthy volunteer was spiked with known quantities of malaria parasites and 5 millilitre and 200 microlitre aliquots were subjected to DNA extraction using QIAamp DNA maxi and DNA mini kits respectively. Nested PCR, to detect malarial SSU rRNA sequences, was performed on the purified DNA samples to determine the limit of detection for this assay with both extraction methodologies. Following assay validation, 54 cord blood units donated by mothers who were positive for anti-malaria antibodies were screened by this approach. RESULTS: When DNA was purified from 5 millilitres of blood it was possible to routinely detect as few as 50 malaria parasites per millilitre using nested PCR. This equates to a significant increase in the sensitivity of the current gold standard nucleic acid amplification technique used to detect malaria parasites (routinely performed from > 200 microlitre volumes of blood). None of the 54 donated cord blood units from serology positive mothers tested positive for malaria parasites using this scaled up DNA preparation method. CONCLUSION: Serological testing for malaria parasites may be overly conservative, leading to unnecessary rejection of cord blood donations that lack malaria parasites and which are, therefore, safe for use in stem cell therapy

    Long-Lasting Immune Responses 4 Years after GAD-Alum Treatment in Children with Type 1 Diabetes

    Get PDF
    A phase II clinical trial with glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) has shown efficacy in preserving residual insulin secretion in children and adolescents with recent-onset type 1 diabetes (T1D). We have performed a 4-year follow-up study of 59 of the original 70 patients to investigate long-term cellular and humoral immune responses after GAD-alum-treatment. Peripheral blood mononuclear cells (PBMC) were stimulated in vitro with GAD65. Frequencies of naΓ―ve, central and effector memory CD4+ and CD8+ T cells were measured, together with cytokine secretion, proliferation, gene expression and serum GAD65 autoantibody (GADA) levels. We here show that GAD-alum-treated patients display increased memory T-cell frequencies and prompt T-cell activation upon in vitro stimulation with GAD65, but not with control antigens, compared with placebo subjects. GAD65-induced T-cell activation was accompanied by secretion of T helper (Th) 1, Th2 and T regulatory cytokines and by induction of T-cell inhibitory pathways. Moreover, post-treatment serum GADA titres remained persistently increased in the GAD-alum arm, but did not inhibit GAD65 enzymatic activity. In conclusion, memory T- and B-cell responses persist 4 years after GAD-alum-treatment. In parallel to a GAD65-induced T-cell activation, our results show induction of T-cell inhibitory pathways important for regulating the GAD65 immunity

    scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy

    Get PDF
    Targeting oncogenic pathways holds promise for brain tumor treatment, but inhibition of Sonic Hedgehog (SHH) signaling has failed in SHH-driven medulloblastoma. Cellular diversity within tumors and reduced lineage commitment can undermine targeted therapy by increasing the probability of treatment-resistant populations. Using single-cell RNA-seq and lineage tracing, we analyzed cellular diversity in medulloblastomas in transgenic, medulloblastoma-prone mice, and responses to the SHH-pathway inhibitor vismodegib. In untreated tumors, we find expected stromal cells and tumor-derived cells showing either a spectrum of neural progenitor-differentiation states or glial and stem cell markers. Vismodegib reduces the proliferative population and increases differentiation. However, specific cell types in vismodegib-treated tumors remain proliferative, showing either persistent SHH-pathway activation or stem cell characteristics. Our data show that even in tumors with a single pathway-activating mutation, diverse mechanisms drive tumor growth. This diversity confers early resistance to targeted inhibitor therapy, demonstrating the need to target multiple pathways simultaneously

    Transcriptional Silencing of the Wnt-Antagonist DKK1 by Promoter Methylation Is Associated with Enhanced Wnt Signaling in Advanced Multiple Myeloma

    Get PDF
    The Wnt/Ξ²-catenin pathway plays a crucial role in the pathogenesis of various human cancers. In multiple myeloma (MM), aberrant auto-and/or paracrine activation of canonical Wnt signaling promotes proliferation and dissemination, while overexpression of the Wnt inhibitor Dickkopf1 (DKK1) by MM cells contributes to osteolytic bone disease by inhibiting osteoblast differentiation. Since DKK1 itself is a target of TCF/Ξ²-catenin mediated transcription, these findings suggest that DKK1 is part of a negative feedback loop in MM and may act as a tumor suppressor. In line with this hypothesis, we show here that DKK1 expression is low or undetectable in a subset of patients with advanced MM as well as in MM cell lines. This absence of DKK1 is correlated with enhanced Wnt pathway activation, evidenced by nuclear accumulation of Ξ²-catenin, which in turn can be antagonized by restoring DKK1 expression. Analysis of the DKK1 promoter revealed CpG island methylation in several MM cell lines as well as in MM cells from patients with advanced MM. Moreover, demethylation of the DKK1 promoter restores DKK1 expression, which results in inhibition of Ξ²-catenin/TCF-mediated gene transcription in MM lines. Taken together, our data identify aberrant methylation of the DKK1 promoter as a cause of DKK1 silencing in advanced stage MM, which may play an important role in the progression of MM by unleashing Wnt signaling

    Pattern of Relapse and Treatment Response in WNT- Activated Medulloblastoma

    Get PDF
    Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses
    • …
    corecore