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scRNA-seq in medulloblastoma shows cellular
heterogeneity and lineage expansion support
resistance to SHH inhibitor therapy
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Targeting oncogenic pathways holds promise for brain tumor treatment, but inhibition of

Sonic Hedgehog (SHH) signaling has failed in SHH-driven medulloblastoma. Cellular diversity

within tumors and reduced lineage commitment can undermine targeted therapy by

increasing the probability of treatment-resistant populations. Using single-cell RNA-seq and

lineage tracing, we analyzed cellular diversity in medulloblastomas in transgenic,

medulloblastoma-prone mice, and responses to the SHH-pathway inhibitor vismodegib. In

untreated tumors, we find expected stromal cells and tumor-derived cells showing either a

spectrum of neural progenitor-differentiation states or glial and stem cell markers. Vismo-

degib reduces the proliferative population and increases differentiation. However, specific cell

types in vismodegib-treated tumors remain proliferative, showing either persistent SHH-

pathway activation or stem cell characteristics. Our data show that even in tumors with a

single pathway-activating mutation, diverse mechanisms drive tumor growth. This diversity

confers early resistance to targeted inhibitor therapy, demonstrating the need to target

multiple pathways simultaneously.
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Therapies that target tumor-initiating oncogenes have been
highly effective for a small number of cancers including
chronic myelogenous leukemia1–3 and basal cell carci-

noma4, but have not been as broadly effective as hoped. Cellular
diversity within tumors may critically limit the efficacy of targeted
therapies. Cell-to-cell variability within tumors is readily studied
using single-cell transcriptomic analysis5–10, and prior studies
suggest ways that diversity may contribute to treatment failure.
For example, single-cell analysis of glioblastomas has shown that
tumors contain subpopulations with diverse receptor tyrosine
kinase (RTK) mutations, suggesting that no single RTK inhibitor
would be likely to inhibit all tumor cells11. High-throughput
single-cell transcriptomic analysis of Sonic Hedgehog (SHH)-
driven medulloblastomas before and after initiation of SHH
inhibitor may determine whether intra-tumor heterogeneity
contributes to the process of therapeutic failure.

Medulloblastoma is among the most frequent malignant brain
tumors in children12. Thirty percent of medulloblastomas show
hyperactivation of the SHH signaling pathway13,14, which also
drives the normal proliferation of cerebellar granule neuron
progenitors (CGNPs) during cerebellar development15–17. Acti-
vating SHH-pathway mutations in CGNPs cause medullo-
blastomas in genetically engineered mice, identifying CGNPs as
the cell of origin for SHH-driven medulloblastoma and providing
a primary animal model of the human disease18–21.

Small-molecule inhibitors of SHH signaling have been inves-
tigated as potential therapies for SHH-driven cancers22. The
Smoothened (SMO) inhibitor vismodegib, which disrupts a
membrane-bound component of the SHH, has been shown to be
effective for basal cell carcinoma and is FDA-approved for
this purpose23. However, while vismodegib can induce initial

responses in SHH-driven medulloblastoma, the long-term effi-
cacy of vismodegib has been limited by the emergence of resis-
tance during therapy24–26. Here, we use medulloblastomas that
form in transgenic, Smo-mutant mice to study the early effects of
vismodegib on cellular diversity in SHH-driven tumors and to
determine if this diversity may contribute treatment failure.

Results
Vismodegib transiently slows medulloblastoma growth in
mice. We generated medulloblastoma-bearing mice by breeding
the transgenic SmoM2 mouse line, which harbors a mutant,
constitutively active allele of Smo, preceded by a LoxP-STOP-
LoxP sequence27 with Math1-Cre mice, that express Cre
recombinase in CGNPs, driven by the Atoh1 (aka Math1)
promoter28–30. The resulting Math1-Cre/SmoM2 (M-Smo) mice
developed medulloblastoma with 100% frequency by postnatal
day 12 (P12). We administered either vismodegib or vehicle to
medulloblastoma-bearing P12 M-Smo mice, daily from P12 to
P15, and then every other day until symptomatic progression.
Initially, vismodegib induced transient tumor regression, with
reduced expression of phosphorylated RB (pRB; Fig. 1a, b).
However, by 2 weeks on treatment, the fraction of pRB+ cells
stopped declining and began to rise (Fig. 1b), and prolonged
treatment did not significantly increase M-Smo mouse survi-
val (Fig. 1c). For longitudinal measurement of pharmacody-
namic response, we administered vismodegib to another
medulloblastoma-prone genotype, hGFAP-Cre/SmoM2/Gli-luc,
that carries a synthetic, SHH-sensitive luciferase reporter con-
struct (G-Smo/Gli-luc; Fig. 1d). Luciferase imaging showed that
the first dose of vismodegib decreased SHH activation, but that
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Fig. 1 Vismodegib induces initial tumor response followed by rapid recurrence. a, b Medulloblastoma in sagittal hindbrain sections stained for
pRB, from representative a P15 M-Smo mice, treated with three daily doses of vehicle or vismodegib, or b P25 M-Smo mice treated for 2 weeks
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for a specific replicate animal. Horizontal lines indicate the means, and error bars indicate SEM. p Values determined by two-sided Student’s t-test. Scale
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SHH activity progressively increased by the third day of treat-
ment, (Fig. 1e, e′). Prior studies have associated vismodegib
failure with tumor stem cells, defined by SOX2 expression,
lineage tracing and transplantation experiments31. To gain
further information on how cellular diversity contributes to
resistance, we subjected tumors from M-Smo mice high-
throughput, single-cell transcriptomic analysis, and compared
tumors in the early stages of vismodegib therapy to vehicle-
treated controls.

Drop-seq analysis identifies stromal and tumor cells. We trea-
ted two groups of five P12 M-Smo mice with three daily doses of
either vismodegib or vehicle, then harvested tumors from all ten
mice at P15. Tumors were dissociated and using the Drop-seq
protocol V3.1 (ref. 32), individual cells co-encapsulated in a
microfluidics chamber with primer-coated beads, allowing mRNAs
to be tagged with cell-specific bar codes and then amplified for
library construction. After sequencing, transcript identities were
determined by the 3′ UTR sequence and matched to cell identities
determined from the bead-specific barcodes. We considered each
bead-specific barcode to represent a putative cell, and we analyze
all putative cells that met inclusion criteria described in Supple-
mentary Materials and Methods, to address the common problems
of gene drop out, unintentional cell–cell multiplexing and pre-
mature cell lysis33,34. A total of 84% of putative cells met inclusion
criteria and were included as informative cells in the analysis.

To assess baseline cellular diversity, we analyzed the cells
collected from vehicle-treated tumors. We conducted a principal
component analysis (PCA) of the ~1500 genes that showed the
highest cell–cell variation, defined by the magnitude of mean
expression and dispersion (variance/mean). The first 11 principal
components (PCs) were selected for further analysis. We rejected
one PC, PC10, that highlighted batch effect variables, consistent
with prior published approaches, proceeding with analysis on 10
PCs35. Louvain clustering on the PC-derived Shared Nearest
Neighbor graph divided the cells into 15 clusters. Concurrently
with cluster analysis, we applied t-distributed Stochastic Neighbor
Embedding (t-SNE) to the PCs to project each cell into a two-
dimensional graph according to local similarities, and lastly,
color-coded cells according to their cluster identities (Fig. 2a). To
analyze the biological relevance of the clusters, we generated
cluster-specific differential expression profiles (Supplementary
Dataset 1) by comparing the expression of each gene by cells
within each cluster versus all cells outside the cluster. We then
searched these profiles for specific markers to infer the biological
identity of cells within each cluster.

These methods defined six clusters that localized to discrete
regions of the t-SNE projection, without closely apposed
neighbors. The gene expression patterns of these clusters
identified them as endothelial cells, vascular fibroblasts, microglia,
neurons, oligodendrocytes and astrocytes (Fig. 2b, Supplementary
Dataset 1). Each of these cell types is expected in the stroma
within or adjacent to the tumors. The other nine clusters were
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closely apposed in a cohesive, multi-cluster complex, suggesting a
spectrum of cells in transition between different states.

To develop an ordered classification within the multi-cluster
complex, we applied hierarchal cluster analysis (HCA) to the
centroids of the PCA-defined clusters. The resulting dendrogram
separated the six clusters of cells with stromal characteristics from
the rest of the population (Fig. 2c). The other nine clusters
subdivided into two subsets, one of which split again before
individual clusters emerged, highlighting three key branch points
(Fig. 2c). We designated these branch points as Nodes AVehicle,
BVehicle and CVehicle (AV–CV). We next assessed the resemblance
of the cells in each cluster and node to the cells of the normal
cerebellum during the period of postnatal neurogenesis.

Differentiation spectrum approximates Atoh1 lineage. In order
to compare medulloblastomas to the normal tissue of origin, we
used Drop-seq to generate single-cell transcriptomic data from
the early postnatal cerebellum. We studied cerebella from five
wild-type (WT) mice at P7, a time with an abundance of both
proliferating and differentiating CGNPs. Single-cell analysis
performed as in the M-Smo analysis divided 7090 WT cells that
passed QC (70% of putative cells) into 14 clusters (Supplementary
Fig. 1a). We generated cluster-specific differential expression
profiles (Supplementary Dataset 2) and identified cell types with
recognizable patterns of gene expression (Fig. 3a). Six clusters
defined discrete stromal cell types, including endothelial cells,
vascular fibroblasts, microglia, Purkinje neurons, oligoden-
drocytes and astrocytes.

Two subsets of cells formed separate multi-cluster groupings,
identified as neural progenitors in a spectrum of differentiation
states by complementary patterns of expression of the prolifera-
tion markerMki67 and the neuronal differentiation markerMeg3.
One multi-cluster population expressed Pax3 and Pax2, identify-
ing it as GABAergic interneuron progenitors and neurons, as
described in previous work36. In this GABAergic group, we noted
sequential expression of the transcription factors Ascl1, Sox2,
Pax3 and Pax2, paralleling the progression from proliferation to
differentiation (Fig. 3b). The other multi-cluster population
showed gene expression patterns identifying it as predominantly
CGNPs in a range of differentiation states, from proliferative,
undifferentiated cells expressing the SHH-pathway transcription
factor Gli1, to cells in successive states of CGN differentiation
marked by sequential expression of markers Ccnd2, Barhl1,
Cntn2, Rbfox3 and Grin2b (Fig. 3c). Differentiated neurons were
subclassified in the WT and M-Smo datasets using glutamatergic
marker Slc17a6 (aka vGlut2), GABAergic marker Gad1 (aka
Gad67), Purkinje neuron marker Calb1, the CGN marker Calb2,
and Eomes (aka Tbr2), which distinguished the small population
of unipolar brush cells (UBCs) from the molecularly similar
CGNs (Supplementary Fig. 1b, c).

We analyzed the similarities between cells from M-Smo tumors
and WT P7 cerebella. The Seurat canonical correlation analysis
(CCA) provides an implementation for integrating single-cell
data across different datasets by projecting the datasets into a
maximally correlated lower dimensional subspace based on
common sources of variation37. Using Seurat CCA, we generated
a t-SNE projection that included both P7 WT and P15 M-Smo
cells (Fig. 3d). In this t-SNE, stroma cell types from tumors and
from WT cerebella co-clustered together, while progenitor-like
tumor cells of Nodes AV–CV clustered separately from all WT
clusters, forming a multi-cluster group alongside the CGNPs,
with a parallel axis of differentiation, and with the GABAergic
progenitors and neurons arrayed in another group on the other
side of the CGNPs. From this analysis, we conclude that the
transcriptomes of the stromal cells types from tumors and WT

were highly similar, while the cells of Nodes AV–CV were
significantly dissimilar to all cell types of the WT cerebella.

In order to look beyond the differences between progenitor-like
tumor cells and WT progenitors, and instead focus on
similarities, we used the k-nearest neighbor (k-NN) algorithm
to project the P15 M-Smo cells into the WT P7 t-SNE (Fig. 3e).
This algorithm projected M-Smo cells into the WT t-SNE
according to their similarity to the cell types present in the WT
dataset and positioned eachM-Smo cell in the centroid of its three
most similar WT cells. Like Seurat CCA, this method correctly
matched cells from each M-Smo stromal cluster to the same cell
type in the WT cerebellum, validating the approach (Fig. 3d, e).
The cells of Nodes AV–CV predominantly localized to the multi-
cluster CGNP group, and mapped in an orderly progression to
successively more differentiated regions (Fig. 3e). Of the cell types
present in the P7 WT cerebellum, the cells of Nodes AV–CV most
closely matched the CGNPs and showed a range of differentiation
states that parallel the CGNP developmental trajectory.

We extended the kNN comparison to WT cells at a range of
ages, using published single-cell RNA-seq analyses of WT cells
from cerebella and hindbrain at ages ranging from embryonic day
10 (E10) to P1038,39. We subjected the gene expression data from
each of these studies to PCA analysis and t-SNE projection using
our pipeline. In the dataset from Vladoiu et al.34, markers
identified the stromal cell types that we identified in our P7 WT
studies (Supplementary Fig. 2a). In the dataset from Carter
et al.38,39, all stromal cell types other than neurons and astrocytes
had been excluded prior to our analysis; as expected, our markers
identified only the neurons and astrocytes in the corresponding
WT t-SNE (Supplementary Fig. 2b). In both cell types, we
identified a domain consisting of the Atoh1 lineage, including
CGNPs, CGNs and UBCs through a combination of markers
Atoh1, Barhl1, Grin2b and Eomes; this domain predominantly
comprised cells from E14–P10 mice (Supplementary Fig. 2a, b).
We then used the kNN method to project either P7 WT cells
from our study, or P15 M-Smo cells into the t-SNEs.

The P7 WT CGNPs projected into the regions of the
embryonic–postnatal WT t-SNEs that corresponded with the
Atoh1 lineage, marked by expression of Atoh1, Barhl1 and Grin2b
(Fig. 3f, h). Similarly, Nodes AV–CV M-Smo cells projected
predominantly to this same region, in a progression that followed
the trajectory of CGNP differentiation (Fig. 3g, i). However, some
cells from Nodes Av and BV mapped to cells from earlier time
points outside the domain of the Atoh1 lineage suggesting a more
primitive state (Fig. 3g, i). Taken together, the Seurat CCA and
kNN comparisons to WT cerebella show that M-Smo tumors
contained progenitor-like cells that were clearly different from
normal progenitors but mirrored a spectrum of differentiation
states ranging from primitive neuroepithelial cells through the
CGNPs with progressively greater differentiation.

Two discrete fate trajectories within M-Smo tumors. To further
explore latent factors within the transitional states within M-Smo
tumors, we used independent component analysis (ICA). For this
analysis, we selected the population of medulloblastoma cells
defined by Nodes AV–CV and selected the genes that met varia-
bility criteria in this specific sub-population. We found that
generating four ICs (IC 1V−4V) produced robust components
that identified non-overlapping sets of cells at each component’s
extremes (Supplementary Dataset 3). One of these ICs, IC 2V was
defined by differentiation state, with neural differentiation mar-
kers highly represented in the 50 most heavily weighted genes
(Supplementary Dataset 3). Using all four ICs as dimensions, we
mapped the medulloblastoma cells in a new, IC-based t-SNE
projection (Supplementary Fig. 3a). In this projection, the Nodes
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AV–CV, as defined by the PCA and HCA, again localized to
discrete and adjacent regions, indicating that the types of cells
identified by the PCA of all cells and the ICA of the CGNP-like
tumor cells showed close correspondence (Fig. 4a).

This ICA-directed t-SNE projection suggested two discrete
patterns of transition. IC 2V defined a gradient of neuronal
differentiation across Node CV (Fig. 4b). Cells outside this
gradient were arranged in a circular pattern that corresponded
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with the cell cycle, as demonstrated by the sequential expression
of Cyclins Ccnd1, Ccne2, Ccna2 and Ccnb2 in adjacent regions,
marking G1, S, G2 and M phases, respectively (Fig. 4c). This same
progression was demonstrated by using the larger cell cycle
phase-specific gene lists identified in prior single-cell transcrip-
tomic studies32 (Supplementary Fig. 3b–f). Node BV mapped to
the point of divergence between the circular path of cycling cells
and the linear path of differentiating cells. Based on these
observations, we infer that ICA sorts medulloblastoma cells into
various stages of two fundamental processes, the cyclic self-
renewal of proliferative cells and the terminal differentiation of
cells exiting the cell cycle (Fig. 4d).

The spectrum of developmental states of the medulloblastoma
cells could be parsed effectively with a series of markers selected
from the differential genes expressed by each node. We found
sequential expression across the nodes of the proliferation
markers Mki67, Pcna, Ccnd1 and Ccnd2, SHH-pathway marker
Gli1, CGNP markers Atoh1, and Barhl, late CGNP marker Cntn2
(aka Tag1), and the neuronal markers Rbfox3 (aka NeuN) and
Meg3 (Supplementary Fig. 4). These markers parsed the
progression of cells from Nodes AV–CV along a CGNP-like
developmental trajectory from proliferative and undifferentiated
to proliferative with early neural differentiation to non-prolif-
erative, with advanced neural differentiation (Fig. 4e), consistent
with the differentiation trajectory identified by ICA and
terminating in mature neurons.

Lineage tracing identifies tumor-derived glial cells. The SmoM2
transgene includes a 3′ Yfp sequence27 that we used to trace
tumor cell lineage. Expression of SmoM2 requires Cre-mediated
stop codon excision, which in M-Smo mice is limited to the
descendants of cells expressing Math1-Cre. The expression of Yfp
thus identified cells descended from Math1-Cre expressing pre-
decessors. As expected, we found Yfp+ cells scattered throughout
Nodes AV–CV (Fig. 5a), indicating Math1-Cre lineage. Because
high-throughput single-cell transcriptomics using Drop-Seq

captures 10–20% of mRNAs in each cell, the sensitivity of
detecting individual markers may be low and varies with
expression levels. The true rate of Yfp expression is therefore
likely higher than the rate detected and it is possible that most or
all of the cells in Nodes AV–CV are derived from Math1-Cre-
expressing predecessors. Inconsistent with the expected Math1-
Cre lineage, however, we also found Yfp+ cells in the astrocytic
and oligodendrocytic clusters. Quantification showed that 8.04 ±
2.84% (mean ± SEM) of the Yfp+ cells expressed the astrocytic
marker Gfap and 7.59 ± 1.16% expressed the oligodendroglial
marker Sox10. The co-expression of Yfp with Gfap or Sox10
indicates that Math1-Cre expressing predecessors in M-Smo
tumors give rise to progeny with glial phenotypes.

The Yfp+ glial cells in M-Smo mice suggested a lineage
expansion caused by SHH hyperactivation. Extensive lineage
tracing studies in normal mice show that Math1 expression
defines a set of cells with neural commitment29,39. However, these
studies were intended to characterize the predominant fate of the
Math1+ cells, rather than to test for the possibility of rare
deviations from the typical trajectory. Moreover, Math1-Cre is a
synthetic transgene and the domain of Cre expression in Math1-
Cre mice may not exactly correspond with native Atoh1
expression. To determine experimentally whether Math1-Cre
predecessors in normal cerebellum give rise to cells with glial
phenotype, we used flow cytometry to trace lineage in cerebella
from Math1-Cre/Pham mice, in which Math1-Cre activates
expression of the fluorescent reporter DENDRA2. We then
quantified the co-expression of DENDRA2 and GFAP. We found
that 9.53 ± 0.73% (mean ± SEM) of the DENDRA2− cells were
GFAP+ compared to 0.04 ± 0.01% of the DENDRA2+ cells
(Fig. 5b), indicating that GFAP+ descendants of Math1-Cre-
expressing cells were extremely rare in cerebella without tumors.

To trace the Math1 lineage in tumors, we bred Math1-Cre/
Pham and SmoM2 mice. The resulting Math1-Cre/SmoM2/
Pham (M-SmoPham) mice developed tumors with the descen-
dants of Math1-Cre-expressing cells marked by DENDRA2. We
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then used flow cytometry to quantify the co-expression of
DENDRA2 and GFAP. In dissociated P15 M-SmoPham tumors,
8.73 ± 1.74% of the DENDRA2+ cells were GFAP+ (Fig. 5b),
>200-fold higher than the GFAP+ fraction of DENDRA2+ cells
in P7 cerebella (p= 0.00832). The GFAP+ fraction in the
DENDRA2+ population of M-SmoPham tumors closely matched
the Gfap+ fraction of the Yfp+ population M-Smo tumors,
providing an alternative confirmation of glial marker

expression by descendants of Math1-Cre-expressing cells within
medulloblastomas.

These studies show that SmoM2-driven tumorigenesis
expanded the range of fates of the Math1-Cre lineage. This
finding is consistent with prior studies demonstrating that SHH
hyperactivation in vitro can expand the Math1 lineage, as CGNPs
cultured with SHH and BMP4 give rise to astrocytes40. The
expansion of cell fates that we observed in M-Smo tumors was
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selective, as two-way ANOVA showed that the rate of Yfp+ cells
in the endothelial, vascular fibroblast and microglial clusters was
significantly lower than in the astrocytic and oligodendrocytic
clusters (p < 0.001 for each comparison). Thus, medulloblastoma
cells assumed a range of fates that was broader than the expected
neuronal fate of the Atoh1-expressing progenitors but remained
within the neuroectodermal lineage.

Tumors contain diverse cells expressing stem cell markers. In
light of the expanded fates in Math1-Cre-descended cells of M-
Smo tumors, we examined the transcriptomic data for evidence of
multipotent stem-like cells. Prior studies analyzed Sox2-eGFP
expression in radiation-induced medulloblastomas that form in
Ptch+/−/Sox2-eGFP mice to identify stem-like cells, whose
properties included self-renewal, tumor recapitulation on trans-
plantation, and the ability to give rise to progeny with diverse
differentiation31. Bulk transcriptomic analysis of eGFP+ tumor
cells from these mice showed upregulation of specific stem cell
markers, including Sox2, Gfap, Olig1, Olig2, Blbp (Fabp7) and
Pdgfra31.

We detected Sox2+ cells in our single-cell transcriptomic data
from M-Smo tumors. The set of genes upregulated in these cells
compared to all other cells (Supplementary Dataset 4) resembled
the transcriptomic profile of Sox2-eGFP+ cells identified by
Vanner et al.31 (hypergeometric test, p= 3.2 × 10−124). However,
the Sox2+ population was diverse, with individual Sox2+ cells
mapping to different regions of the t-SNE, including the
astrocytic and oligodendrocytic clusters and the CGNP-like cells
of Nodes AV–CV (Fig. 5a). Stem cell markers identified in Vanner
et al.31 were not evenly expressed across the Sox2+ population;
rather, different subsets of Sox2+ cells expressed different
combinations of the markers (Fig. 5c). Not all Sox2+ cells were
tumor-derived, as glial cells in normal P7 cerebellum also
expressed Sox2 (Fig. 3b). Altogether, the Sox2+ population
comprised diverse cell types including both normal glia and
tumor-derived cells with either glial and neural progenitor-like
characteristics.

To resolve the different types of Sox2-expressing cells, we
subjected the Sox2+ cells from the vehicle-treated tumors to
ICA and Louvain clustering. The resulting t-SNE projection
defined three discrete groups, a Sox10+ oligodendrocytic group,
an Aqp4+ astrocytic group and a third group composed of
CGNP-like cells from Nodes AV–CV (Fig. 5d). The oligoden-
drocytic and astrocytic groups both included two discrete
subgroups with differential gene expression (Supplementary
Dataset 5). One oligodendrocytic subgroup was Pdgfra+ and
proliferative, as demonstrated by Ccnd1 expression, while the
other showed markers of differentiation, including myelin genes
Mbp1 and Mog (Fig. 5e). We considered the Pdgfra+ group to be
the oligodendrocyte precursors (OPCs). The two astrocytic
subgroups were differentiated by the absence or presence of
Olig1 (Fig. 5e). We considered the Olig1+ subset to be the
astrocyte precursors (APs). Within the astrocytic group, Yfp+

cells distributed entirely within the AP subset (p= 0.0177,
Fisher’s exact test), while within the oligodendrocytic group,
Yfp+ cells distributed across both groups (Fig. 5e). Sox2+ cells
thus included glial and neural-progenitor-like subsets that varied
in differentiation, and tumor-derived Sox2+ astrocytic cells
tended to be undifferentiated.

Inhibiting SHH signaling at SMO promotes differentiation. To
determine the effect of SHH inhibition on cellular heterogeneity
and developmental trajectory, we compared single-cell gene
expression data from vismodegib-treated and vehicle-treated
tumors, including >30,000 cells harvested from a total of ten

tumors. We identified PCs using the same workflow as in the
vehicle-only and WT analyses and used these PCs for t-SNE
visualization and Louvain clustering.

We again found that cells localized in the t-SNE in several
single-cluster groups and in one large multi-cluster group.
Specific markers identified the single-cluster groups as endothelial
cells, vascular fibroblasts, microglia, neurons, oligodendrocytes
and astrocytes (Fig. 6a). The multi-cluster group comprised 11
clusters which hierarchical cluster analysis divided into four
nodes, designated ATogether–DTogether (Nodes AT–DT; Fig. 6b).
Nodes AT–CT showed phenotypes that matched Nodes AV–CV,
while Node DT comprised cells with increased expression of late
differentiation markers (Fig. 6c). A small portion of the vehicle-
treated cells that populated Node CV were placed in Node DT,
however >85% of Node DT derived from vismodegib-treated
tumors (Fig. 6d; p= 0.007 by two-sample T-test), indicating that
vismodegib induced a more differentiated state. Cells throughout
Node DT expressed Yfp, confirming the tumor lineage of these
differentiated cells (Fig. 6e).

Increased differentiation was further demonstrated by mapping
the cells of vehicle- and vismodegib-treated tumors according to
their best fit among the cells of the WT cerebellum using kNN.
Compared to vehicle-treated tumors, the CGNP-like cells from
vismodegib-treated tumors mapped to more differentiated
regions of the WT CGNPs in both our P7 dataset and in the
datasets of Carter et al. and Vladoiu et al.38,39, (Fig. 6f,
Supplementary Fig. 5). ICA on Nodes AT–DT demonstrated that
vismodegib induced progression along a differentiation trajectory,
with more vismodegib-treated cells at the extreme of the IC1
(Fig. 6g; Supplementary Dataset 6). Developmental mapping and
ICA both confirm a shift in the CGNP-like tumor cells toward
more differentiated states.

Variation in vismodegib sensitivity. To determine the responses
of each cell type to vismodegib, we compared the populations of
each node and cluster in vehicle-treated and vismodegib-treated
tumors. We determined for each individual animal the number of
cells in each node and cluster, normalized to the total number of
cells from that animal. We then compared the distribution of cells
from vismodegib-treated and vehicle-treated mice across nodes
and clusters (Fig. 6h, Supplementary Fig. 6a). These comparisons
showed a shift in which the proliferative populations (Nodes AT

+ BT) were depleted by vismodegib and the non-proliferative
populations (Nodes CT+DT) were enriched (p < 0.001 by
ANOVA).

The enrichment of differentiated cell types was relative, rather
than absolute. Vanner et al.31 previously showed that in
medulloblastomas, differentiated progeny of stem cells tend to
undergo apoptosis after a period of days31. Consistent with this
finding, we previously found large accumulations of neurons in
apoptosis-deficient medulloblastomas in Bax-deleted mice, sug-
gesting that differentiating tumor cells are typically removed by
BAX-regulated cell death41. We did not observe accumulation of
neurons in medulloblastomas of M-Smo mice after 3 weeks of
vismodegib treatment (Supplementary Fig. 6b), suggesting that cell
death may follow differentiation. However, we also were unable to
detect a significant increase in cells showing the apoptotic marker
cleaved caspase-3 (Supplementary Fig. 6c), consistent with either
no increase in cell death, or a small, asynchronous increase that is
hard to detect. Further studies with Bax-mutantM-Smo mice may
be needed to determine if vismodegib-induced differentiation is
followed by latent cell death.

Depletion of proliferating cell types by vismodegib was not
uniform. The population of Node BT showed a statistically
significant (p < 0.001) 2-fold decrease. In contrast, the population
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of Node AT showed a 30% decrease that was not statistically
significant. Similar patterns were also seen in the Yfp+ subset of
cells, with statistically significant depletion of Yfp+ cells in Node
BT, statistically significant enrichment of Yfp+ cells in Node DT

and no statistically significant changes in the Yfp+ fractions of

Node AT or the astrocytic or oligodendroglial clusters (Fig. 6i).
The different effects of vismodegib on the node populations
identify the proliferating cells of Node BT as vismodegib-sensitive
and the proliferating cells of Node AT, along with the Yfp+ glial
cells, as relatively vismodegib-resistant.
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Persistent SHH activation in vismodegib-resistant cells. We
found that SHH activation persisted in the cells that remained in
proliferative Node AT in vismodegib-treated tumors, demon-
strated by continued expression of the SHH pathway markers
Gli1 (Fig. 7a), Ptch1, Hhip and Sfrp1 (Supplementary Fig. 7).
These results were consistent with the resumption of Gli-luc
signal after 3 days of vismodegib treatment (Fig. 1e) and indicate
that in a subset of cells, vismodegib failed to suppress SHH-driven
transcription. We hypothesized that this failure could potentially
arise from a pharmacodynamic mechanism in which the drug is
present but unable to block the pathway, or from a pharmaco-
kinetic mechanism, in which the unaffected cells are not exposed
to the drug, due to local variation in drug penetration.

To test for uneven distribution of vismodegib, we visualized
drug distribution using mass spectrometry imaging (MSI)
accomplished by infrared matrix-assisted laser desorption
electrospray ionization (IR-MALDESI). For this purpose, brains
were harvested from vismodegib-injected and control mice,
rapidly frozen, and sectioned in the sagittal plane. The frozen
sections were then scanned progressively across the section by IR-
infrared laser and the resulting ionized species arising from each
successively scanned region were detected by mass spectrometry,
generating concentration maps for each ion across the entire
section. We were able to map vismodegib, and to compare
vismodegib concentration to endogenous metabolites. We found
cholesterol in relatively high concentrations throughout the brain
but low concentrations in all regions of the tumor (Fig. 7b). In
contrast to cholesterol, vismodegib was evenly distributed across
the brain and tumor, without local variation (Fig. 7b). This even
distribution argues against a local pharmacokinetic cause for
differential effects of vismodegib.

HES1 marks vismodegib-sensitive tumor cells. To gain insight
in the mechanisms of differential pharmacodynamic response to
vismodegib in different cell types, we compared gene expression
in untreated cells of the vismodegib-sensitive and vismodegib-
resistant clusters. Noting that cluster 0 of Node BT was most
strongly depleted by vismodegib (Supplementary Fig. 6a), we
generated a list of genes differentially upregulated in Cluster 0 in
vehicle-treated tumors compared to all other vehicle-treated cells
(Supplementary Dataset 7). Focusing on the transcription factors
on this list, we noted specific expression of the Notch pathway
transcription factor Hes1. Analysis of Hes1 expression in the
vehicle-treated subset of the t-SNE showed that in control tumors
Hes1+ cells predominantly localized to cluster 0 in Node BT,
but were also found in clusters within Node AT, and in
the astrocytic and oligodendrocytic clusters (Fig. 7c). The Hes1+

cells in vehicle-treated tumors were predominantly Gli1+, indi-
cating SHH-pathway activation. Vismodegib decreased Hes1
expression in Nodes AT and BT, while glial clusters remained
Hes1+ (Fig. 7c, g top panel).

We analyzed HES1 protein expression in tumor sections by
immunohistochemistry to confirm these observations and to

determine the spatial distribution and proliferative state of
HES1+ cells. HES1+ cells were distributed throughout the
vehicle-treated tumors (Fig. 7d) and co-localized with pRB,
consistent with the proliferative phenotype predicted by the
transcriptomic data. Vismodegib reduced pRB in tumors, reduced
HES1 expression and markedly reduced pRB in the HES1+

population (Fig. 7g middle panel). To determine if the reduction
in HES1+ cells persisted over time, we examined HES1
expression in tumors in M-Smo mice with vismodegib for
14 days. In these tumors, HES1+ cells were as rare as in tumors
treated for 3 days, and pRB was significantly reduced in the
HES1+ population (Supplementary Fig. 8a). These data show that
proliferative HES1+ tumor cells were widely distributed and
disproportionately inhibited by vismodegib.

MYOD1 marks vismodegib-resistant tumor cells. In contrast to
Hes1, the transcription factor Myod1 identified a subset of tumor
cells that remained proliferative after vismodegib treatment. We
identified Myod1 by searching for transcription factors in the set
of genes upregulated in vismodegib-treated cells of Node AT

compared to vehicle-treated cells of Node BT (Supplementary
Dataset 8). Analysis of Myod1 expression in the vehicle subset of
the t-SNE showed that Myod1+ cells localized to the Gli1+ Nodes
AT and BT (Fig. 7a, e). After vismodegib treatment, cells in Nodes
AT and BT continued to express Myod1, and these Myod1+ cells
continued to express Gli1 (Fig. 7a, e). Analysis of vehicle-treated
tumor sections demonstrated MYOD1-expressing cells through-
out the tumors. (Fig. 7f). Dual labeling in sections (Fig. 7f, g) and
flow cytometry showed that these cells were pRB+ and distributed
across the cell cycle (Fig. 7h), confirming the proliferative state
predicted by the transcriptomic data. Vismodegib produced a
trend toward reduced MYOD1+ cells that was not statistically
significant (Fig. 7g, h), did not significantly reduce pRB expres-
sion in the MYOD1+ population, and only modestly altered cell
cycle phase distribution (Fig. 7f–h). In contrast to HES1+ cells,
MYOD1+ cells continued to proliferate in tumors treated for
14 days, showing a statistically significant decrease in relative
fraction but no decrease in pRB+ fraction (Supplementary
Fig. 8b). These data show that HES1 and MYOD1 mark subsets of
proliferating tumor cells with markedly different sensitivities to
vismodegib.

HES1 and MYOD1 in clinical medulloblastoma samples. We
analyzed transcriptomic data from human medulloblastomas to
determine whether HES1 and MYOD1 are frequently expressed.
We found heterogeneous expression of both genes in published
data42 from patient-derived tumor samples (Fig. 7i, j; Supple-
mentary Fig. 9). We noted variation in mean expression across
medulloblastoma subtypes, and wide variability within each
subtype. These data show that human tumors contain HES1+ and
MYOD1+ cells, and that in human tumors, as in mouse tumors,
expression of these genes is heterogeneous.

Fig. 6 Vismodegib advances differentiation and depletes subsets of tumor cells. a t-SNE projection of cells from five vehicle-treated and five vismodegib-
treated tumors, directed by PCA, plotted either with cells from both conditions shown together, or in separate images, and color-coded for the expression
of indicated markers. b Dendrogram depicts the HCA that identified Nodes AV–CV. c Dot Plot showing expression of developmental markers across Nodes
AV–CV. d Nodes and identified cell types color-coded on t-SNE from a. e Feature plot of YFP on the t-SNE from a. f Cells from the five vehicle-treated or five
vismodegib-treated tumors, mapped using the k-NN algorithm onto the t-SNE projection of WT P7 cerebella (Fig. 3a), with Nodes AT–DT and identified cell
types color-coded. g ICA-directed t-SNE projection of CGNP-like cells from vehicle-treated and or vismodegib-treated tumors, with the differentiation IC
color-coded. h Fractional population of indicated groups from vehicle-treated and vismodegib-treated mice, normalized to the total number of cells per
mouse. Each dot represents an individual replicate animal. Horizontal lines indicate the means, and error bars indicate SEM. i Fractional population changes
in Yfp+ cells induced by vismodegib, formatted as in g. p Values in h and i determined by one-way ANOVA.
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Reduced Sufu in vismodegib-resistant tumor cells. Mutations of
intracellular SHH-pathway regulator Sufu can confer vismodegib
resistance25 and we therefore analyzed the effect of Sufu expres-
sion on cellular response to treatment. We plotted Gli1 expression
as a function of Sufu expression, and for comparison plotted the
SHH target Ptch1 as a function of Gli1. To prevent cells with

stochastic drop out of Gli1, Ptch1 or Sufu from biasing the data,
we used the Markov affinity-based graph imputation of cells
(MAGIC) algorithm43 to impute expression values in cells where
0 transcripts of each gene were detected. For Ptch1, this method
showed a statistically significant positive correlation with Gli1 in
both vehicle-treated and vismodegib-treated tumors (r= 0.971,
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p < 1 × 10−15 and r= 0.925, p < 1 × 10−15, respectively; hypoth-
esis testing of correlation by t-distribution; Fig. 8b). In contrast,
Sufu showed a statistically significant positive correlation with
Gli1 in vehicle-treated tumors (r= 0.406, p < 1 × 10−15; hypoth-
esis testing of correlation by t-distribution), but a statistically

significant negative correlation in vismodegib-treated tumors
(r=−0.566, p < 1 × 10−15; hypothesis testing of correlation by
t-distribution; Fig. 8c). This negative correlation persisted when
Node DT cells, which were rare in the vehicle-treated tumors and
numerous in the vismodegib-treated tumors, were removed from

Fig. 7 HES1 and MYOD1 mark vismodegib-responsive and resistant subsets of cells. a t-SNE projections as in Fig. 6a, with Gli1+ cells indicated.
b MALDESI images of cholesterol and vismodegib distribution in sagittal brain sections including both tumor and normal brain. c t-SNE projections as in
a with Hes1+ cells indicated. d IHC for HES1 and pRB in sagittal hindbrain sections from representativeM-Smomice treated as indicated. e t-SNE projections
as in a, with Myod1+ cells indicated. f IHC for MYOD1 and pRB in sagittal hindbrain sections from representative M-Smo mice treated as indicated.
g Quantification of data from c–f. Dots represent individual replicate mice. Horizontal lines represent means and error bars indicate SEM. h Analysis of
MYOD1, pRB and cell cycle phase by flow cytometry. Graphs formatted as in g. i, j Expression microarray data on HES1 and MYOD1 expression in human
medulloblastoma samples, as presented in ref. 44, with boxes indicating the mean, 25th and 75th percentile and whiskers indicating the 10th and 90th
percentiles. Scale bars= 2 mm, except in insets where scale bars= 100 µm. p Values determined by two-sided Student’s t-test.
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the analysis (Supplementary Fig. 10). Further, we used ANCOVA
to test whether the relationship between Sufu and Gli1 was
dependent on treatment (p < 1 × 10−16; ANCOVA Gli1 ~
Sufu*Treatment). Based on this statistically significant effect of
treatment, which induced a negative correlation between Sufu
and Gli, we propose that that vismodegib may sensitize medul-
loblastoma cells to the inhibitory effect of SUFU, such that cells
with higher SUFU differentiate while cells with lower SUFU
remain proliferative.

Sox2+ cells respond heterogeneously to vismodegib. Single-cell
analysis identified subsets of cells with variable sensitivity to vis-
modegib within the Sox2+ population. To analyze the effect of
vismodegib on the heterogeneity within this population, we divi-
ded the Sox2+ population into a glial population that was Fabp7+,
and a CGNP-like population that was Fabp7−. ICA-directed
analysis of the Sox2+ populations of vehicle-treated and
vismodegib-treated tumors showed that the vehicle-treated tumors
contained a significant population of CGNP-like Sox2+ cells that
were Hes1+ AND Fabp7− (41.1 ± 2.5%; five replicates) and that
this population was specifically depleted by vismodegib (5.1 ±
2.9%; five replicates; FC= 0.1245, p= 1.5 × 10−5; Student’s t-test;
Fig. 8d, e). In contrast, the oligodendrocytic, OPC-like, astrocytic
and AP-like subsets of Sox2+ cells were relatively preserved in
vismodegib-treated tumors (Fig. 8d, e). Comparing Sox2+ cells in
vehicle-treated and vismodegib-treated tumors and stratifying
using Yfp expression and the markers identified by Vanner et al.31,
we identified subsets that were relatively depleted or enriched by
vismodegib treatment, including Sox2+ cells of tumor lineage
(Fig. 8f). Thus, within the Sox2+ population, as with the broader
tumor population, specific subsets of cells were relatively sensitive
or resistant to vismodegib, and tumor-derived cells with stem cell-
like transcriptomes persisted after vismodegib treatment.

Discussion
We found that medulloblastomas contain diverse types of tumor
cells, including CGNP-like cells in a spectrum of differentiation
states, and tumor-derived cells with patterns of gene expression
typical of astrocytic precursors and oligodendrocytic precursors,
fates outside the expected Atoh1 lineage of the CGNPs. The
expression patterns of all genes detected in our studies in the P7
WT cerebella and in treated and control tumors can be plotted
through our web-based application, available at gershon-lab.med.
unc.edu/single-cell/. In both the recapitulation of expected
developmental trajectories and the presence of neoplastic OPC-
like and AP-like cells, the M-Smo medulloblastomas resembled
other malignant brain tumors that have been similarly subjected
to single-cell transcriptomic analysis6,9. While vismodegib pro-
duced an overall increase in differentiation, different populations
of tumor cells demonstrated different responses to disruption of
the SHH pathway. Vismodegib treatment eliminated a Hes1+

subset of proliferating, CGNP-like cells, while a Myod1+ subset
remained proliferative, and continued to show SHH-pathway
activation. Within the Sox2+ population, we noted a similarly
heterogeneous response to SHH inhibition, with Fabp7−/Hes1
+/Sox2+ cells depleted by vismodegib and OPC-like, AP-like and
FABP7−/Myod1+/Sox2+ populations persisting. The diversity of
vismodegib-resistant cell types identifies several populations of
cells that may drive recurrence and treatment failure.

The identification of subgroups within the Sox2+ population,
including vismodegib-resistant Sox2+ stem-like cell types,
extends the prior finding that Sox2+ cells are tumor propagating
cells that can repopulate tumors after vismodegib therapy31.
Additionally, we found populations of vismodegib-resistant cells

that express Myod1, of which only a fraction express stem cell
markers. MYOD1+ cells continued to express pRB after con-
tinued administration of vismodegib, demonstrating continued
propagation during therapy. Thus at the outset of treatment,
before a long period of selective pressure, M-Smo tumors already
contain several populations of cells that no longer depend on the
initiating oncogenic mutation.

The expression of Hes1 in CGNP-like cells of Nodes AT and BT
may reflect active NOTCH pathway signaling, or alternatively
direct induction of Hes1 by SHH pathway hyperactivation. Hes1
is known to be a target of NOTCH, and signaling specifically
through NOTCH2 has been shown in both CGNP development44

and in medulloblastoma45. However, prior reports also describe
direct activation of Hes1 by SHH signaling through SMO and
GLI2, which binds to the Hes1 promoter46,47. Consistent with a
direct mechanism, SMOM2-mediated SHH hyperactivation
clearly correlated with increased Hes1 expression, as Hes1+ cells
were markedly enriched in M-Smo medulloblastomas compared
to WT P7 cerebella. The rapid depletion of the non-glial Hes1+

populations after vismodegib treatment would also support a
direct relationship between SMOM2-mediated SHH hyper-
activation and Hes1 expression in tumor cells. Direct stimulation
of Hes1 by SHH would be clinically relevant as it would limit the
potential for NOTCH-pathway inhibitors to alter medullo-
blastoma growth.

We found MYOD1 mRNA in all four medulloblastoma sub-
types, andMyod1 expression has previously been reported in both
rare cells within the CGNP population, and in proliferative tumor
cells in SHH-driven medulloblastoma in mice48. Interestingly,
Myod1 haploinsufficiency increased SHH-driven tumorigenesis in
the SmoA1 and SmoA2 mouse models, suggesting a tumor sup-
pressive role48. Such a role would not preclude the possibility that
MYOD1+ tumor cells drive recurrence, as MYOD1-expressing
cells may have mechanisms that overcome a putative tumor-
suppressive effect. Clearly, MYOD1+ cells in M-Smo tumors are
able to proliferate.

The potential lineage relationship between the Myod1-expres-
sing CGNP-like cells and the Sox2-expressing stem-like cells
requires further study. A finding that Sox2+ cells give rise to
Myod1+ cells would support a hierarchical relationship. In con-
trast, if Myod1+ cells give rise to Sox2+ cells, that result would
show that movement through the hierarchy can be bi-directional,
and that pluripotency is not hierarchically limited. The obser-
vance of Yfp+ glial cells provides evidence that committed Atoh1-
expressing progenitors re-acquired neural stem cell-like plur-
ipotency as a consequence of SMOM2-mediated oncogenic
transformation. Whether pluripotency can be increased at any
time to regenerate tumor stem cells, however, remains to be
answered. These lineage studies would inform the question of
which subsets of cells must be targeted to block recurrence.

Our finding of persistent SHH pathway activation in the
Myod1+ cells in vismodegib-treated tumors demonstrates is
SMO-independent SHH activation. The inhibition of Gli1 by
vismodegib in the Hes1+ cells indicates that the SMOM2 protein
is vismodegib-sensitive. The even distributions of both Myod1+

cells and vismodegib throughout the tumors argue against a role
of local variation in drug levels as the cause of vismodegib failure
in these cells. Rather, our data support a variation in the phar-
macodynamic effect of vismodegib in different types of cells. We
propose that this variation may be mediated by native SUFU,
which has been related to vismodegib resistance in patients with
medulloblastoma25 and basal cell carcinoma49. Based on the
inverse correlation between the expression of Sufu and Gli1,
specifically after vismodegib treatment, we propose that vismo-
degib sensitizes tumor cells to SUFU-mediated inhibition by
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reducing stimulation through SMO and SMOM2. Under condi-
tions of vismodegib-mediated SMO and SMOM2 inhibition, cells
with more SUFU reduce Gli1 expression and differentiate, while
cells with less SUFU continue SHH-driven proliferation. We
speculate that epigenetic modulation may reduce Sufu expression
and thus prevent differentiation in the Myod1+ population.
Targeted disruption of epigenetic modulators may clarify this
mechanism, and if confirmatory, may provide a mechanism for
blocking vismodegib resistance.

Methods
Key materials including primers and antibodies, with dilutions used:

Reagent Concentration Source Identifier

Animal studies
C57BL/6 mice N/A The Jackson Laboratory Stock #000664
Math1-Cre mice N/A The Jackson Laboratory Stock #011104
SmoM2-eYFPloxP/loxP mice N/A The Jackson Laboratory Stock #005130
PhamloxP/loxP mice N/A The Jackson Laboratory Stock #018385
Gli-luc mice N/A Generously shared by Dr.

Oren Becher, Northwestern
University and Dr. Eric
Holland, Fred Hutchinson
Cancer Research Center

MGI #4820828

N-Methyl-2-pyrrolidone (NMP) 1:10 Millipore Sigma Catalog #328634
Polyethylene glycol (PEG) 9:10 Millipore Sigma Catalog #P3015-

250G
Vismodegib 75 mg/kg or

100 mg/kg in
NMP:PEG

LC Laboratories Catalog #V-4050

Isoflurane Vapor Piramal Critical Care, Inc. NCD Code #66794-
017-25

PCR
Tail lysis buffer 1× Allele Biotechnology Catalog #ABP-PP-

MT01
Cre forward primer: GCG GTC
TGG CAG TAA AAA CTA TC

200 µM Invitrogen JAX #oIMR1084

Cre reverse primer: GTG AAA
CAG CAT TGC TGT CAC TT

200 µM Invitrogen JAX #oIMR1085

SmoM2 (YFP) forward primer:
AAG TTC ATC TGC ACC ACC G

400 µM Invitrogen JAX #oIMR0872

SmoM2 (YFP) reverse primer: TCC
TTG AAG AAG ATG GTG CG

400 µM Invitrogen JAX #oIMR1416

Pham Common primer: CCA AAG
TCG CTC TGA GTT GTT ATC

200 µM Invitrogen JAX #13840

Pham WT reverse primer: GAG
CGG GAG AAA TGG ATA TG

200 µM Invitrogen JAX #13841

Pham Mutant reverse primer:
TCA ATG GGC GGG GGT CGT T

200 µM Invitrogen JAX #oIMR7320

Gli-luc forward primer:
TATCATGGATTCTAAAACGG

200 µM Invitrogen N/A

Gli-luc reverse primer: CAGCTCTT
CTTCAAATCTATAC

200 µM Invitrogen N/A

Apex Taq DNA Polymerase
Master Mix

1× Genessee Scientific Catalog #42-138

Platinum Blue PCR SuperMix 1× Invitrogen Catalog # 12580015
Molecular biology grade water – Corning Inc. 46-000-CM

Immunofluorescence and immunohistochemistry
Paraformaldehyde (PFA) 4% in PBS
Phosphate-buffered saline (PBS) 1×
Antigen retrieval 1:100 Vector Laboratories Catalog #H-3300
Donkey serum 2% in

0.3% PBST
Millipore Sigma Catalog #D9663

DAPI 1:2500 Invitrogen Catalog #D1306
SOX2 1:200 Cell Signaling Technology Catalog #4900
HES1 1:200 Cell Signaling Technology Catalog #11988
MyoD1 1:100 (Mouse) Novus Catalog #NBP2-

32882-0.1 mg
phospho-RB (Ser807/811) 1:3000 Cell Signaling Technology Catalog #8516
GFAP 1:2000 Dako Catalog #Z0334
NeuN 1:10,000 Millipore Catalog #MAB377
Calbindin 1:400 Cell Signaling Technology Catalog #2173
Goat anti-rabbit Alexa Fluor 488 1:400 Thermo Fisher Scientific Catalog #A-11034
Goat anti-mouse Alexa Fluor 555 1:400 Thermo Fisher Scientific Catalog #A-21424
Novolink Polymer Per

manufacturer’s
instructions

Leica Biosystems Catalog #RE7200-
CE

ImmPRESS™ HRP Anti-Rabbit IgG Per
manufacturer’s
instructions

Vector Laboratories Catalog #MP-7401

ImmPRESS™ HRP Anti-Mouse IgG Per
manufacturer’s
instructions

Vector Laboratories Catalog #MP-7402

Dissociation
Papain Dissociation System Per

manufacturer’s
instructions

Worthington Biochemical
Corporation

Catalog #LK003150

Hank’s Balanced Salt
Solution (HBSS)

1× Gibco Catalog #14175-095

D-(+)-Glucose 6 g/L Millipore Sigma Catalog #G7021
Flow cytometry
FIX & PERM Cell Fixation & Cell
Permeabilization Kit

Per
manufacturer’s
instructions

Thermo Fisher Scientific Catalog #GAS003

Heat-inactivated Fetal Bovine
Serum (HI-FBS)

5% in FACS
wash buffer

Gibco Catalog #10437028

Table a (continued)

Reagent Concentration Source Identifier

Sodium azide (NaN3) 0.1% in FACS
wash buffer

Fisher Scientific Catalog #S2271-25

PFA 0.1% in
sheath fluid

FxCycle Violet 1:100 Thermo Fisher Scientific Catalog #F10347
phospho-RB Alexa Fluor 488 1:50 Cell Signaling Technology Catalog #4277
MyoD Allophycocyanin (APC) 1:50 Novus Catalog #NBP2-

34772APC
GFAP Alexa Fluor 647 1:50 Cell Signaling Technology Catalog #3657

Commercial assays
Drop-seq beads32 90–110/μL ChemGenes Lot # 090316
Nextera XT NA Illumina FC-131-1024

Oligonucleotides
Template_Switch_Oligo: AAGCAG
TGGTATCAACGCAGAGTGAA
TrGrGrG

32 N/A

TSO_PCR: AAGCAGTGGTATC
AACGCAGAGT

32 N/A

P5-TSO_Hybrid: AATGATAC
GGCGACCACCGAGATCTACACG
CCTGTCCGCGGAAGCAGTGGT
ATCAACGCAGAGT*A*C

32 N/A

Read1CustomSeqB:
GCCTGTCCGCGGAAGCAG
TGGTATCAACGCAGAGTAC

32 N/A

Mice. C57BL/6 mice, SmoM2-eYFPloxP/loxP mice and PhamloxP/loxP mice were
purchased from the Jackson Laboratory. Math1-Cre mice, which express Cre
recombinase under control of a cloned Atoh1 promoter sequence30, were gener-
ously shared by Dr. Robert Wechsler-Reya. Gli-luc mice, which express luciferase
through GLI activation were generously shared by Dr. Oren Becher and Dr. Eric
Holland. Mouse genotyping was performed using Cre, Pham or SmoM2 primers
above. All mice were of the species Mus musculus and maintained on a C57BL/6
background over at least five generations and were handled in compliance with all
relevant ethical regulations for animal testing and research as specified by the
University of North Carolina Institutional Animal Care and Use Committee in
approved protocol 16-099.

Pharmacological administration. M-Smo littermates were injected intraper-
itoneally (I.P.) with 50 µL of 75 mg/kg vismodegib dissolved in one part of N-
methyl-2-pyrrolidone (NMP) and nine parts of polyethylene glycol (PEG) or a
vehicle control of 1:10 NMP:PEG. Equal numbers of female and male mice were
randomly assigned to vehicle or vismodegib-treated groups. Mice were injected
once daily for 3 days from P12 to P14 and collected at P15 for Drop-Seq, IHC and/
or flow cytometry. For survival studies, mice were administered 50 µL of vehicle or
100 mg/kg vismodegib in NMP:PEG (1:10) once daily from P12 to P14 and then
every other day. For long-term vismodegib studies, M-Smo mice underwent a
similar protocol and were administered 50 µL of vehicle or 75 mg/kg vismodegib in
NMP:PEG (1:10) once daily from P12 to P14 and then every other day and col-
lected at P25. Mice were monitored daily for changes in body weight and symp-
toms such as ataxia, tremor and seizures. Animals were euthanized and brains
collected if body weight dropped more than 20% over 24 h and/or they developed
severe neurological symptoms according to approved protocols.

Tissue preparation for Drop-Seq and flow cytometry. Mice were anesthetized
with isoflurane and euthanized by decapitation. Brains were cut in half sagittally
and drop-fixed in 4% paraformaldehyde for IHC, and half cerebellum or tumor
collected for Drop-Seq. Alternatively, half of the tumor was collected for flow
cytometry.

Cells were dissociated using the Papain Dissociation System (Worthington
Biochemical) according to the manufacturer’s protocol, as in our prior studies50.
Briefly, tumors or cerebella were dissected from isoflurane-anesthetized C57BL/6
or M-Smo mice and incubated in papain at 37 °C for 15 min. The tissue was then
triturated, and the cells were spun down, resuspended and a density gradient
was formed with ovomucoid inhibitor. Lastly, cells were resuspended in HBSS
with 6 g/L glucose and diluted to ~100 cells/µl for Drop-seq.

Alternatively, cells were resuspended in Hank’s Balanced Salt Solution with
6 g/L glucose, fixed and permeabilized for flow cytometry using the Fix & Perm
Cell Fixation & Cell Permeabilization Kit (ThermoFisher Scientific), according to
the manufacturer’s protocol. Cells were stained for FxCycle Violet and with GFAP,
phospho-RB, and/or MYOD1 as indicated. Samples were run on the Becton
Dickinson LSR Fortressa and data were analyzed with FlowJo V10. The gating
strategy for excluding debris, doublets and sub-G1 cells is exemplified in
Supplementary Fig. 11.

Immunofluorescence imaging. Brains were fixed in 4% paraformaldehyde for at
least 48 h. Tissue was processed and embedded in paraffin at the UNC Center for
Gastrointestinal Biology and Disease Histology core. Sections were deparaffinized
and antigen retrieval was performed using a low-pH citric acid-based buffer.
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Staining was performed with assistance from the Translational Pathology
Laboratories. Slides were scanned using the Leica Biosystems Aperio ImageScope
software (12.3.3).

IR-MALDESI. Spatial distribution of vismodegib drug levels was studied by IR-
MALDESI51,52. Sagittal sections (10 μm) of mouse brain samples were prepared in
a cryotome, thaw-mounted on glass microscope slides, and maintained at −10 °C
on the sample stage of the IR-MALDESI source chamber prior to analysis. The
stage translated the sample step-wise across the focused beam of an IR laser (λ=
2.94 μm, IR-Opolette 2371; Opotek, Carlsbad, CA, USA), which desorbed sample
material from adjacent 100-μm-diameter sampling locations. An electrospray (50/
50 mixture of methanol/water (v/v) with 0.2% formic acid) ionized the desorbed
neutral molecules, and resulting ions were sampled into a high resolving power
Thermo Fisher Scientific Q Exactive Plus (Bremen, Germany) mass spectrometer
for synchronized analysis. The mass spectrometer was operated in positive ion
mode from m/z 200 to 800, with resolving power of 140,000FWHM at m/z 200. With
high mass measurement accuracy (MMA) within 5 ppm maintained using proto-
nated and sodiated adducts of diisooctyl phthalate as two internal lock masses at
m/z 391.28428 and 413.26623, vismodegib was identified by its protonated mole-
cular ion [M+H+]+ at m/z 421.01695. To generate images from mass spectrometry
data, raw data from each voxel was converted to the mzXML format using
MSConvert software53. These mzXML files were interrogated using MSiReader, a
free software developed for processing MSI data54.

Drop-Seq library preparation and sequencing. Drop-Seq libraries were prepared
according to the Drop-seq protocol V3.1 (ref. 32), with full details available online
(http://mccarrolllab.com/dropseq/). Cell and bead concentrations were both set to
between 95 and 110/μL.

WT cerebellum cells were co-encapsulated with barcoded beads using FlowJEM
brand PDMS devices. Flow rates on the PDMS device for cells and beads were set
to 3800 μL/h, flow rate for oil was maintained at 15,000 μL/h, resulting in a 4.5%
bead occupancy rate in a 0.7-nL droplet.

Medulloblastoma cells were co-encapsulated using a Dolomite-brand glass
device. All cells were processed within 1 h of tissue dissociation. Flow rates on the
glass device were set to 2400 and 12,000 μL/h for cells/beads and oil, respectively,
with a 1–2.5% bead occupancy rate.

Droplet breakage and library preparation steps followed Drop-seq protocol
V3.1 (ref. 32), with specific modifications:

● Following each PCR, an additional Ampure XP cleanup was performed at a 1×
ratio, for a total of one 0.3× purification followed by a 1× purification. We
found this to reduce residual PCR primer in the bioanalyzer electropherogram.

● Beads were stored at 4° after exonuclease step for up to 2 months prior to
generating cDNA.

Following the completion of each set of experiments, a library pool consisting of
the tagmented cDNA from 2000 beads/run was prepared and sequenced to low
depth (~2.5 M reads/2K beads). These data were used to assess library efficiency,
including total read losses to PolyA regions, nonsense barcodes and adapter
sequences as well as the quality and number of the transcriptomes captured.
Passable runs contained 40–60% of reads associated with the top 80–100 barcodes
found in 2000 beads. For those runs that passed our quality assessment, we re-
sequenced newly prepared libraries from the stored beads. The bulk cDNA libraries
were prepared using the same ratio of 2000 beads/PCR.

Processing of Drop-seq sequencing data. Raw sequence data were processed in a
Linux environment using Drop-seq Tools V1.13. (https://github.com/
broadinstitute/Drop-seq/releases) to generate a digital expression (DGE) matrix.
Step-by-step protocols may be found in the original documentation.

DGE matrices were used to generate Seurat objects in R (https://satijalab.org/
seurat/). Input data are raw sequences in Fastq format, demultiplexed by sample
identity. We first convert Fastq to BAM/SAM format and merge samples that were
sequenced across multiple lanes.

The Drop-Seq Alignment pipeline version 1.13 (ref. 32) was run following
default settings, with the STAR aligner55. STAR version 2.5.4a was used to align
against either an mm10, or an mm10 & hg19 mixed reference:

For Medullobastoma Drop-Seq runs, cells were multiplexed with a spike-in of
cultured HEK 293 cells to serve as an internal control. First, data were aligned
against a mixed-species reference consisting of both hg19 and mm10 reference
genomes, with chromosome and gene IDs annotated to contain a species-specific
string. Cell barcodes were selected based on their human/mouse transcriptomic
content, and only barcodes with >90% mouse transcript were chosen for further
analysis.

Cells identified as mouse in origin were then aligned a second time, using a
reference genome consisting of mm10, plus two synthetic chromosomes consisting
of the Cre recombinase and SmoM2/EYFP fusion transcript transgenes.

WT cerebella were processed with no species-mixed spike-in and were only
aligned once, against the mm10 transgenic reference.

Filtering of Drop-seq sequencing data. Full data analysis workflow and r scripts
are available at https://github.com/ben-babcock/Gershon_single-cell.

Data analysis was performed in an R environment using the Seurat toolkit37.
Following Seurat standard recommendations, data were first filtered for quality.

Genes were required to be detected in as many as 30 cells to qualify as a “true”
transcript—this is intended to prevent misaligned reads appearing as rare
transcripts in the data. Cells were then filtered using specific QC criteria to limit the
analysis to cells with transcriptomes that were well-characterized and not
apoptotic.

We used filtering to identify which putative cells, identified by barcodes,
represent informative cells. Putative cells with fewer than 500 UMIs or genes were
considered to have too little information to be useful, and potentially to contain
mostly ambient mRNA reads. Putative cells with greater than >4–5 standard
deviations above the median nUMI or nGene were suspected to be doublets,
improperly merged barcodes, or sequencing artifacts and were excluded. Putative
cells with predominantly mitochondrial transcripts (>4–5 standard deviations
above the median level of mitochondrial transcripts) were suspected to be dying
cells and also excluded. For each QC step based on standard deviation, a cutoff
between 4 and 5 standard deviations was selected in order to sample optimally
around the mean, as visualized by violin plot following Macosko et al. guidelines32.
Based on these considerations, QC criteria were:

● UMIs >500 and <4–5 standard deviations above the median
● Genes >500 <4–5 standard deviations above the median
● Mitochondrial transcripts <4–5 standard deviations above the median

In total, 84% of putative cells from M-Smo mice and 70% of putative cells from
WT mice met QC criteria and were included in the analysis. From the 10 M-Smo
mice, including both vehicle-treated and vismodegib-treated animals, we included a
total of 29,234 cells, with five replicate mice per condition, with a range of
642–8062 cells per animal and a median of 2636 cells. From the five P7 WT mice,
we included a total of 7090 cells, with a range of 788–2049 cells per animal and a
median of 1169 cells.

Clustering. Genes were selected for differential expression across the sample using
Seurat’s highly variable gene selection tool, “FindVariableGenes”. Mean expression
and variance was calculated across the sample, and mean expression plotted against
dispersion (variance/mean). Genes were sorted into equal-width bins and z-scored.
We applied low and high mean expression cutoffs of 0.125 and 3 (x-cutoff) and
minimum z-score of 0.5.

PCA was used to reduce the dimensionality of the gene expression matrix. A
singular value decomposition (SVD) PCA was performed on the subset of highly
variable genes. To identify an appropriate number of PCs, we employed a z-scoring
method. We run a complete PCA reduction, and z-score the contribution of each
PC to the total variance. PCs with z > 2 were considered significant and used
further in analysis. The SVD PCA returns right singular values, representing the
embeddings of each cell in PC space, and left singular values, representing the
loadings (weights) of each genes in the PC space. Cell embeddings (right singular
values) were weighted by the variance of each PC.

Plotting for visualization. Reduction to two dimensions was applied to the PCA
matrix (the matrix of cells by their PC embeddings, hereafter referred to as PC-
space) in order to place cells in a 2d plot for easy visualization (https://github.com/
jkrijthe/Rt-SNE)56. In parallel, independent of the t-SNE projection,
Louvain–Jaccard clustering was performed on the PC-space. This “bottom-up”
clustering method employs a stochastic shared-nearest-neighbor (SNN) approach,
in which cells are grouped according to their neighbors in PC space. The nearness
of two cells is weighted by the Jaccard index, or the degree of sharing between the
lists of each cell’s nearest neighbors. The algorithm will build small groups of cells
and attempt to iteratively merge them into clusters, until the modularity is max-
imized. We found that a resolution of 0.8 was most appropriate for building
biologically meaningful clusters.

Cell-type identification. Following PCA and t-SNE, we inspected clusters for
expression of indicated markers. We determined differentially expressed genes
using the Seurat implementation of the likelihood-ratio test for single cell gene
expression57. Marker genes were plotted using an expression cutoff to facilitate the
visualization of both high- and low-expression genes on a single plot. Cutoffs are
applied so that only cells with expression >cutoff received the color corresponding
to that gene. These cutoffs (gene expression thresholds) are found in Supple-
mentary Dataset 9. In feature plots of multiple genes, for individual cells expressing
multiple markers, each gene was over-plotted in the order presented in figure
legends. To provide open access to our data through a convenient graphical user
interface, we have set up an interactive data viewer accessible through the Gershon
Lab web site (gershon-lab.med.unc.edu/single-cell).

Doublet cell removal. Doublets form when two cells’ transcriptomes are co-
captured on the same barcoded bead, resulting in two cells represented by a single
barcode. Many doublets were removed during the initial filtering steps. However,
we found clusters (or parts of clusters) that were identified by differential gene
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expression to be doublets. The characteristic signature of these groups in our data is
the significant differential expression of many genes with a low fold-change and
high percent of cells expressing the gene in each group. These doublets were
considered a technical effect and removed from further analysis of the sample.

Merging clusters into nodes. To classify clusters according to their similarities,
we applied Seurat’s “BuildClusterTree” function running on default parameters.
This applies a hierarchical clustering algorithm to the cluster centroids in PC-
space. Clusters closely apposed in the resulting dendrogram are referred to in the
text as Nodes, owing to the fact that they are composed of clusters co-localized
below a branch point, or node.

Projecting tumor cells into WT t-SNE. To place medulloblastoma cell types in the
context of developmental biology, we performed PCA and cluster analysis on
single-cell gene expression data from WT cerebellum harvested at P7. The PCA
matrices for cells and genes were both extracted from the WT data.

Here the right singular values of the PCA represent a weighting (called Gene
Loading) of each gene in WT PC-space. The left singular values (called Cell
Embeddings) can be approximated for a given cell by multiplying the right singular
values (gene weights) by a vector of the cells’ gene expression. The sum of this
product returns the left singular value.

We apply this method to approximate the PC-space embeddings for a cell from
outside of the original PCA, here a medulloblastoma cell into WT PC-space.

For visualization purposes, we place each medulloblastoma (MB) cell into the
WT t-SNE coordinate system using the k-NN algorithm. For each
medulloblastoma cell, we identify the five most similar WT cells (K= 5).
Considering these WT cells to be the five nearest neighbors, we average the t-SNE
coordinates of these five WT cells to generate a t-SNE position for the projected
MB cell. Plotting the projected cells overlaid on the WT cells demonstrates visually
which WT and tumors cells were most similar and places the medulloblastoma
cells in the biological context of a P7 cerebellum.

ICA analysis. To further understand the underlying biology of the medullo-
blastomas, we removed the stromal cells and performed an ICA. ICA was run on
an input matrix of variable genes × cells expression data. To predict the number of
significant IC dimensions, we perform a PCA on the same data, predict the number
of significant PC dimensions as in the clustering steps, and proceed with an
equivalent number of ICs. A t-SNE reduction of the ICs places cells into a two-
dimensional space for visualization.

Gene–gene correlation. In Drop-Seq, as well as other single-cell transcriptomic
methods, much of the expression data suffer from undersampling, or gene drop-
out. To recover gene correlations across cells with missing values, we employed the
MAGIC denoising method43. MAGIC shares information across similar cells to
impute missing values by diffusing gene expression values across the neighbors. We
found 12 neighbors to be the appropriate number which recovered statistical sig-
nificance of biologically meaningful correlations.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The RNA sequencing data have been deposited in the Gene Expression Omnibus
database under the accession code GSE129730. These data may be interactively explored
at http://gershon-lab.med.unc.edu/single-cell/. Other datasets referenced during the
study are available from the European Nucleotide Archive (https://www.ebi.ac.uk/ena/
data/search?query=PRJEB23051) and the European Genome-phenome Archive (https://
www.ebi.ac.uk/ega/studies/). All the other data supporting the findings of this study are
available within the article and its supplementary information files and from the
corresponding author upon reasonable request. A reporting summary for this article is
available as a Supplementary Information file.

Code availability
Scripts corresponding to the analysis contained in the current study are provided at
https://github.com/ben-babcock/Gershon_single-cell.
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