37 research outputs found

    The acheulean handaxe : More like a bird's song than a beatles' tune?

    Get PDF
    Š 2016 Wiley Periodicals, Inc. KV is supported by the Netherlands Organization for Scientific Research. MC is supported by the Canada Research Chairs Program, the Social Sciences and Humanities Research of Canada, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and Simon Fraser UniversityPeer reviewedPublisher PD

    Shape Variation in Aterian Tanged Tools and the Origins of Projectile Technology: A Morphometric Perspective on Stone Tool Function

    Get PDF
    BACKGROUND: Recent findings suggest that the North African Middle Stone Age technocomplex known as the Aterian is both much older than previously assumed, and certainly associated with fossils exhibiting anatomically modern human morphology and behavior. The Aterian is defined by the presence of 'tanged' or 'stemmed' tools, which have been widely assumed to be among the earliest projectile weapon tips. The present study systematically investigates morphological variation in a large sample of Aterian tools to test the hypothesis that these tools were hafted and/or used as projectile weapons. METHODOLOGY/PRINCIPAL FINDINGS: Both classical morphometrics and Elliptical Fourier Analysis of tool outlines are used to show that the shape variation in the sample exhibits size-dependent patterns consistent with a reduction of the tools from the tip down, with the tang remaining intact. Additionally, the process of reduction led to increasing side-to-side asymmetries as the tools got smaller. Finally, a comparison of shape-change trajectories between Aterian tools and Late Paleolithic arrowheads from the North German site of Stellmoor reveal significant differences in terms of the amount and location of the variation. CONCLUSIONS/SIGNIFICANCE: The patterns of size-dependent shape variation strongly support the functional hypothesis of Aterian tools as hafted knives or scrapers with alternating active edges, rather than as weapon tips. Nevertheless, the same morphological patterns are interpreted as one of the earliest evidences for a hafting modification, and for the successful combination of different raw materials (haft and stone tip) into one implement, in itself an important achievement in the evolution of hominin technologies

    Electrochemical Behavior of Ce(IV)/Ce(III) Couple in N,N‐Di(2‐ethylhexyl)‐n‐butanamide (DEHBA), N,N‐Di(2‐ethylhexyl)‐iso‐butanamide (DEHiBA), and N,N‐Di(2‐ethylhexyl)‐3,3‐dimethyl Butanamide (DEHDMBA)

    No full text
    International audienceIn this work we report on the electrochemical behavior of Ce(IV)/Ce(III) redox couple in pure N,N-dialkyl amides (N,N-DA), namely N,N-di(2-ethylhexyl)-n-butanamide (DEHBA), N,N-di(2-ethylhexyl)-iso-butanamide (DEHiBA), and N,Ndi(2-ethylhexyl)-3,3-dimethyl butanamide (DEHDMBA) equilibrated with nitric aqueous solutions as an entry to the direct electrochemical characterization of plutonium in these extractants. Ce(IV)/Ce(III) redox process was used as a model. Its potential (E 1/2 1.02 V/SCE) is not affected by the temperature and the nature of the N,N-DA and this clearly indicates that the functionalities of the these extractants produce the same relative effect on both +IV and +III oxidation states of the cerium cation. Linear variations of the current intensity of the reduction peak of Ce(IV) with the concentration of Ce(IV)/N,N-DAs/HNO 3 (5M) solutions were obtained from cyclic voltammograms recorded at 25°C and 40°C. Due to the poor definition of the voltammograms in DEHiBA and DEHDMBA, such characterization allows only the evaluation of the performances of the chemical extraction of Ce(IV) from aqueous nitric acid solution by the undiluted DEHBA. To our knowledge, the electrochemical behavior of Ce(IV)/Ce(III) in N,N-DAs was not previously studied and our findings will for sure open the door for further investigations in this field

    In vivo quantification of localized neuronal activation and inhibition in the rat brain using a dedicated high temporal-resolution β(+)-sensitive microprobe

    No full text
    Understanding brain disorders, the neural processes implicated in cognitive functions and their alterations in neurodegenerative pathologies, or testing new therapies for these diseases would benefit greatly from combined use of an increasing number of rodent models and neuroimaging methods specifically adapted to the rodent brain. Besides magnetic resonance (MR) imaging and functional MR, positron-emission tomography (PET) remains a unique methodology to study in vivo brain processes. However, current high spatial-resolution tomographs suffer from several technical limitations such as high cost, low sensitivity, and the need of restraining the animal during image acquisition. We have developed a β(+)-sensitive high temporal-resolution system that overcomes these problems and allows the in vivo quantification of cerebral biochemical processes in rodents. This β-MICROPROBE is an in situ technique involving the insertion of a fine probe into brain tissue in a way very similar to that used for microdialysis and cell electrode recordings. In this respect, it provides information on molecular interactions and pathways, which is complementary to that produced by these technologies as well as other modalities such as MR or fluorescence imaging. This study describes two experiments that provide a proof of concept to substantiate the potential of this technique and demonstrate the feasibility of quantifying brain activation or metabolic depression in individual living rats with 2-[(18)F]fluoro-2-deoxy-d-glucose and standard compartmental modeling techniques. Furthermore, it was possible to identify correctly the origin of variations in glucose consumption at the hexokinase level, which demonstrate the strength of the method and its adequacy for in vivo quantitative metabolic studies in small animals
    corecore