651 research outputs found

    Locally critical quantum phase transitions in strongly correlated metals

    Full text link
    When a metal undergoes a continuous quantum phase transition, non-Fermi liquid behaviour arises near the critical point. It is standard to assume that all low-energy degrees of freedom induced by quantum criticality are spatially extended, corresponding to long-wavelength fluctuations of the order parameter. However, this picture has been contradicted by recent experiments on a prototype system: heavy fermion metals at a zero-temperature magnetic transition. In particular, neutron scattering from CeCu6−x_{6-x}Aux_x has revealed anomalous dynamics at atomic length scales, leading to much debate as to the fate of the local moments in the quantum-critical regime. Here we report our theoretical finding of a locally critical quantum phase transition in a model of heavy fermions. The dynamics at the critical point are in agreement with experiment. We also argue that local criticality is a phenomenon of general relevance to strongly correlated metals, including doped Mott insulators.Comment: 20 pages, 3 figures; extended version, to appear in Natur

    Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks.

    Get PDF
    <div><p>Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predicting the active metabolic state under specific environmental conditions. The objective function to be used in such optimization algorithms is directly linked with the biological hypothesis underlying the model and therefore it is one of the most relevant parameters for successful modeling. Although linear combination of selected fluxes is widely used for formulating metabolic objective functions, we show that the resulting optimization problem is sensitive towards stoichiometry representation of the metabolic network. This undesirable sensitivity leads to different simulation results when using numerically different but biochemically equivalent stoichiometry representations and thereby makes biological interpretation intrinsically subjective and ambiguous. We hereby propose a new method, Minimization of Metabolites Balance (MiMBl), which decouples the artifacts of stoichiometry representation from the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation independent algorithms is fundamental for unambiguously linking modeling results with biological interpretation. For example, MiMBl allowed us to expand the scope of metabolic modeling in elucidating the mechanistic basis of several genetic interactions in <em>Saccharomyces cerevisiae</em>.</p> </div

    Spin-orbit density wave induced hidden topological order in URu2Si2

    Full text link
    The conventional order parameters in quantum matters are often characterized by 'spontaneous' broken symmetries. However, sometimes the broken symmetries may blend with the invariant symmetries to lead to mysterious emergent phases. The heavy fermion metal URu2Si2 is one such example, where the order parameter responsible for a second-order phase transition at Th = 17.5 K has remained a long-standing mystery. Here we propose via ab-initio calculation and effective model that a novel spin-orbit density wave in the f-states is responsible for the hidden-order phase in URu2Si2. The staggered spin-orbit order 'spontaneous' breaks rotational, and translational symmetries while time-reversal symmetry remains intact. Thus it is immune to pressure, but can be destroyed by magnetic field even at T = 0 K, that means at a quantum critical point. We compute topological index of the order parameter to show that the hidden order is topologically invariant. Finally, some verifiable predictions are presented.Comment: (v2) Substantially modified from v1, more calculation and comparison with experiments are include

    Quantum Criticality in Heavy Fermion Metals

    Full text link
    Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, which use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including i) the extent to which the quantum criticality in heavy fermion metals goes beyond the standard theory of order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum critical regime, iii) the non-Fermi liquid phenomena that accompany quantum criticality, and iv) the interplay between quantum criticality and unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review article, intended for general readers; the discussion part contains more specialized topic

    Quantum phase transitions

    Full text link
    In recent years, quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. These transitions, which are accessed at zero temperature by variation of a non-thermal control parameter, can influence the behavior of electronic systems over a wide range of the phase diagram. Quantum phase transitions occur as a result of competing ground state phases. The cuprate superconductors which can be tuned from a Mott insulating to a d-wave superconducting phase by carrier doping are a paradigmatic example. This review introduces important concepts of phase transitions and discusses the interplay of quantum and classical fluctuations near criticality. The main part of the article is devoted to bulk quantum phase transitions in condensed matter systems. Several classes of transitions will be briefly reviewed, pointing out, e.g., conceptual differences between ordering transitions in metallic and insulating systems. An interesting separate class of transitions are boundary phase transitions where only degrees of freedom of a subsystem become critical; this will be illustrated in a few examples. The article is aimed on bridging the gap between high-level theoretical presentations and research papers specialized in certain classes of materials. It will give an overview over a variety of different quantum transitions, critically discuss open theoretical questions, and frequently make contact with recent experiments in condensed matter physics.Comment: 50 pages, 7 figs; (v2) final version as publishe

    Strongly coupled quantum criticality with a Fermi surface in two dimensions: fractionalization of spin and charge collective modes

    Full text link
    We describe two dimensional models with a metallic Fermi surface which display quantum phase transitions controlled by strongly interacting critical field theories below their upper critical dimension. The primary examples involve transitions with a topological order parameter associated with dislocations in collinear spin density wave ("stripe") correlations: the gapping of the order parameter fluctuations leads to a fractionalization of spin and charge collective modes, and this transition has been proposed as a candidate for the cuprates near optimal doping. The coupling between the order parameter and long-wavelength volume and shape deformations of the Fermi surface is analyzed by the renormalization group, and a runaway flow to a non-perturbative regime is found in most cases. A phenomenological scaling analysis of simple observable properties of possible second order quantum critical points is presented, with results quite similar to those near quantum spin glass transitions and to phenomenological forms proposed by Schroeder et al. (cond-mat/0011002).Comment: 16 pages, 4 figures; (v2) additional clarifying remark

    Blood Signature of Pre-Heart Failure: A Microarrays Study

    Get PDF
    International audienceBACKGROUND: The preclinical stage of systolic heart failure (HF), known as asymptomatic left ventricular dysfunction (ALVD), is diagnosed only by echocardiography, frequent in the general population and leads to a high risk of developing severe HF. Large scale screening for ALVD is a difficult task and represents a major unmet clinical challenge that requires the determination of ALVD biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: 294 individuals were screened by echocardiography. We identified 9 ALVD cases out of 128 subjects with cardiovascular risk factors. White blood cell gene expression profiling was performed using pangenomic microarrays. Data were analyzed using principal component analysis (PCA) and Significant Analysis of Microarrays (SAM). To build an ALVD classifier model, we used the nearest centroid classification method (NCCM) with the ClaNC software package. Classification performance was determined using the leave-one-out cross-validation method. Blood transcriptome analysis provided a specific molecular signature for ALVD which defined a model based on 7 genes capable of discriminating ALVD cases. Analysis of an ALVD patients validation group demonstrated that these genes are accurate diagnostic predictors for ALVD with 87% accuracy and 100% precision. Furthermore, Receiver Operating Characteristic curves of expression levels confirmed that 6 out of 7 genes discriminate for left ventricular dysfunction classification. CONCLUSIONS/SIGNIFICANCE: These targets could serve to enhance the ability to efficiently detect ALVD by general care practitioners to facilitate preemptive initiation of medical treatment preventing the development of HF

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Emergent Rank-5 'Nematic' Order in URu2Si2

    Full text link
    Novel electronic states resulting from entangled spin and orbital degrees of freedom are hallmarks of strongly correlated f-electron systems. A spectacular example is the so-called 'hidden-order' phase transition in the heavy-electron metal URu2Si2, which is characterized by the huge amount of entropy lost at T_{HO}=17.5K. However, no evidence of magnetic/structural phase transition has been found below T_{HO} so far. The origin of the hidden-order phase transition has been a long-standing mystery in condensed matter physics. Here, based on a first-principles theoretical approach, we examine the complete set of multipole correlations allowed in this material. The results uncover that the hidden-order parameter is a rank-5 multipole (dotriacontapole) order with 'nematic' E^- symmetry, which exhibits staggered pseudospin moments along the [110] direction. This naturally provides comprehensive explanations of all key features in the hidden-order phase including anisotropic magnetic excitations, nearly degenerate antiferromagnetic-ordered state, and spontaneous rotational-symmetry breaking.Comment: See the published version with more detailed discussion
    • …
    corecore