3,389 research outputs found

    Optimization of an Externally Mixed Biogas Plant Using a Robust CFD Method

    Get PDF
    Biogas plants have to be continuously or periodically mixed to ensure the homogenization of fermenting and fresh substrate. Externally installed mixers provide easier access than submerged mixers but concerns of insufficient mixing deter many operators from using this technology. In this paper, a new approach to improve homogenization of the substrate mixture is proposed by optimizing external mixer configurations across a wide range of rheological properties. Robust optimization of a biogas reactor is coupled with CFD simulations to improve parameters for the angles of inflow and the position of the substrate outlet in a large-scale fermenter. The optimization objective is to minimize the area in the tank which is poorly mixed. We propose to define this “dead volume zone” as the region in which the velocity magnitude during mixing falls below a certain threshold. Different dry substance contents are being investigated to account for the varying rheological properties of different substrate compositions. The velocity thresholds are calculated for each dry substance content from the mixer-tank configuration of a real biogas reactor in Brandenburg, Germany (BGA Warsow GmbH & Co.KG). The robust optimization results comprising the whole range of rheological properties are compared to simulations of the original configuration and to optimization results for each individual dry substance content. The robust CFD-based optimized configurations reduce the dead volume zones significantly across all dry substance contents compared to the original configuration. The outcomes of this paper can be particularly useful for plant manufacturers and operators for optimal mixer placement in industrial size biogas fermenters.BMBF - ROENOBIO project with contract number 05M2013UTA (Germany), DFG - RTG 2126 Algorithmic Optimization (Germany

    Embodied uncertainty: living with complexity and natural hazards

    Get PDF
    In this paper, we examine the concept of embodied uncertainty by exploring multiple dimensions of uncertainty in the context of risks associated with extreme natural hazards. We highlight a need for greater recognition, particularly by disaster management and response agencies, of uncertainty as a subjective experience for those living at risk. Embodied uncertainty is distinguished from objective uncertainty by the nature of its internalisation at the individual level, where it is subjective, felt and directly experienced. This approach provides a conceptual pathway that sharpens knowledge of the processes that shape how individuals and communities interpret and contextualise risk. The ways in which individual characteristics, social identities and lived experiences shape interpretations of risk are explored by considering embodied uncertainty in four contexts: social identities and trauma, the co-production of knowledge, institutional structures and policy and long-term lived experiences. We conclude by outlining the opportunities that this approach presents, and provide recommendations for further research on how the concept of embodied uncertainty can aid decision-making and the management of risks in the context of extreme natural hazards

    Probing the dynamics of quasicrystal growth using synchrotron live imaging

    Get PDF
    The dynamics of quasicrystal growth remains an unsolved problem in condensed matter. By means of synchrotron live imaging, facetted growth proceeding by the tangential motion of ledges at the solid-melt interface is clearly evidenced all along the solidification of icosahedral AlPdMn quasicrystals. The effect of interface kinetics is significant so that nucleation and free growth of new facetted grains occur in the melt when the solidification rate is increased. The evolution of these grains is explained in details, which reveals the crucial role of aluminum rejection, both in the poisoning of grain growth and driving fluid flow

    Conjugation-Length Dependence of Spin-Dependent Exciton Formation Rates in Pi-Conjugated Oligomers and Polymers

    Full text link
    We have measured the ratio, r = σS/σT\sigma_S/\sigma_T of the formation cross section, σ\sigma of singlet (σS\sigma_S) and triplet (σT\sigma_T) excitons from oppositely charged polarons in a large variety of π\pi-conjugated oligomer and polymer films, using the photoinduced absorption and optically detected magnetic resonance spectroscopies. The ratio r is directly related to the singlet exciton yield, which in turn determines the maximum electroluminescence quantum efficiency in organic light emitting diodes (OLED). We discovered that r increases with the conjugation length, CL; in fact a universal dependence exists in which r1r^{-1} depends linearly on CL1CL^{-1}, irrespective of the chain backbone structure. These results indicate that π\pi-conjugated polymers have a clear advantage over small molecules in OLED applications.Comment: 5 pages, 4 figure

    Pion propagation in the linear sigma model at finite temperature

    Get PDF
    We construct effective one-loop vertices and propagators in the linear sigma model at finite temperature, satisfying the chiral Ward identities and thus respecting chiral symmetry, treating the pion momentum, pion mass and temperature as small compared to the sigma mass. We use these objects to compute the two-loop pion self-energy. We find that the perturbative behavior of physical quantities, such as the temperature dependence of the pion mass, is well defined in this kinematical regime in terms of the parameter m_pi^2/4pi^2f_pi^2 and show that an expansion in terms of this reproduces the dispersion curve obtained by means of chiral perturbation theory at leading order. The temperature dependence of the pion mass is such that the first and second order corrections in the above parameter have the same sign. We also study pion damping both in the elastic and inelastic channels to this order and compute the mean free path and mean collision time for a pion traveling in the medium before forming a sigma resonance and find a very good agreement with the result from chiral perturbation theory when using a value for the sigma mass of 600 MeV.Comment: 18 pages, 11 figures, uses RevTeX and epsfig. Expanded conclusions, added references. To appear in Phys. Rev.

    A Combined Patch-Clamp and Electrorotation Study of the Voltage- and Frequency-Dependent Membrane Capacitance Caused by Structurally Dissimilar Lipophilic Anions

    Get PDF
    Interactions of structurally dissimilar anionic compounds with the plasma membrane of HEK293 cells were analyzed by patch clamp and electrorotation. The combined approach provides complementary information on the lipophilicity, preferential affinity of the anions to the inner/outer membrane leaflet, adsorption depth and transmembrane mobility. The anionic species studied here included the well-known lipophilic anions dipicrylamine (DPA−), tetraphenylborate (TPB−) and [W2(CO)10(S2CH)]−, the putative lipophilic anion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}B(CF3)4 {\text{B}}{\left( {{\text{CF}}_{3} } \right)}^{ - }_{4} \end{document} and three new heterocyclic W(CO)5 derivatives. All tested anions partitioned strongly into the cell membrane, as indicated by the capacitance increase in patch-clamped cells. The capacitance increment exhibited a bell-shaped dependence on membrane voltage. The midpoint potentials of the maximum capacitance increment were negative, indicating the exclusion of lipophilic anions from the outer membrane leaflet. The adsorption depth of the large organic anions DPA−, TPB− and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}B(CF3)4 {\text{B}}{\left( {{\text{CF}}_{3} } \right)}^{ - }_{4} \end{document} increased and that of W(CO)5 derivatives decreased with increasing concentration of mobile charges. In agreement with the patch-clamp data, electrorotation of cells treated with DPA− and W(CO)5 derivatives revealed a large dispersion of membrane capacitance in the kilohertz to megahertz range due to the translocation of mobile charges. In contrast, in the presence of TPB− and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}B(CF3)4 {\text{B}}{\left( {{\text{CF}}_{3} } \right)}^{ - }_{4} \end{document} no mobile charges could be detected by electrorotation, despite their strong membrane adsorption. Our data suggest that the presence of oxygen atoms in the outer molecular shell is an important factor for the fast translocation ability of lipophilic anions

    Scaling in a Nonconservative Earthquake Model of Self-Organised Criticality

    Full text link
    We numerically investigate the Olami-Feder-Christensen model for earthquakes in order to characterise its scaling behaviour. We show that ordinary finite size scaling in the model is violated due to global, system wide events. Nevertheless we find that subsystems of linear dimension small compared to the overall system size obey finite (subsystem) size scaling, with universal critical coefficients, for the earthquake events localised within the subsystem. We provide evidence, moreover, that large earthquakes responsible for breaking finite size scaling are initiated predominantly near the boundary.Comment: 6 pages, 6 figures, to be published in Phys. Rev. E; references sorted correctl
    corecore