663 research outputs found
Sharp error terms for return time statistics under mixing conditions
We describe the statistics of repetition times of a string of symbols in a
stochastic process. Denote by T(A) the time elapsed until the process spells
the finite string A and by S(A) the number of consecutive repetitions of A. We
prove that, if the length of the string grows unbondedly, (1) the distribution
of T(A), when the process starts with A, is well aproximated by a certain
mixture of the point measure at the origin and an exponential law, and (2) S(A)
is approximately geometrically distributed. We provide sharp error terms for
each of these approximations. The errors we obtain are point-wise and allow to
get also approximations for all the moments of T(A) and S(A). To obtain (1) we
assume that the process is phi-mixing while to obtain (2) we assume the
convergence of certain contidional probabilities
Relating two standard notions of secrecy
Two styles of definitions are usually considered to express that a security
protocol preserves the confidentiality of a data s. Reachability-based secrecy
means that s should never be disclosed while equivalence-based secrecy states
that two executions of a protocol with distinct instances for s should be
indistinguishable to an attacker. Although the second formulation ensures a
higher level of security and is closer to cryptographic notions of secrecy,
decidability results and automatic tools have mainly focused on the first
definition so far.
This paper initiates a systematic investigation of the situations where
syntactic secrecy entails strong secrecy. We show that in the passive case,
reachability-based secrecy actually implies equivalence-based secrecy for
digital signatures, symmetric and asymmetric encryption provided that the
primitives are probabilistic. For active adversaries, we provide sufficient
(and rather tight) conditions on the protocol for this implication to hold.Comment: 29 pages, published in LMC
A reduced semantics for deciding trace equivalence using constraint systems
Many privacy-type properties of security protocols can be modelled using
trace equivalence properties in suitable process algebras. It has been shown
that such properties can be decided for interesting classes of finite processes
(i.e., without replication) by means of symbolic execution and constraint
solving. However, this does not suffice to obtain practical tools. Current
prototypes suffer from a classical combinatorial explosion problem caused by
the exploration of many interleavings in the behaviour of processes.
M\"odersheim et al. have tackled this problem for reachability properties using
partial order reduction techniques. We revisit their work, generalize it and
adapt it for equivalence checking. We obtain an optimization in the form of a
reduced symbolic semantics that eliminates redundant interleavings on the fly.Comment: Accepted for publication at POST'1
SuperNeurons: Dynamic GPU Memory Management for Training Deep Neural Networks
Going deeper and wider in neural architectures improves the accuracy, while
the limited GPU DRAM places an undesired restriction on the network design
domain. Deep Learning (DL) practitioners either need change to less desired
network architectures, or nontrivially dissect a network across multiGPUs.
These distract DL practitioners from concentrating on their original machine
learning tasks. We present SuperNeurons: a dynamic GPU memory scheduling
runtime to enable the network training far beyond the GPU DRAM capacity.
SuperNeurons features 3 memory optimizations, \textit{Liveness Analysis},
\textit{Unified Tensor Pool}, and \textit{Cost-Aware Recomputation}, all
together they effectively reduce the network-wide peak memory usage down to the
maximal memory usage among layers. We also address the performance issues in
those memory saving techniques. Given the limited GPU DRAM, SuperNeurons not
only provisions the necessary memory for the training, but also dynamically
allocates the memory for convolution workspaces to achieve the high
performance. Evaluations against Caffe, Torch, MXNet and TensorFlow have
demonstrated that SuperNeurons trains at least 3.2432 deeper network than
current ones with the leading performance. Particularly, SuperNeurons can train
ResNet2500 that has basic network layers on a 12GB K40c.Comment: PPoPP '2018: 23nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programmin
Prochlo: Strong Privacy for Analytics in the Crowd
The large-scale monitoring of computer users' software activities has become
commonplace, e.g., for application telemetry, error reporting, or demographic
profiling. This paper describes a principled systems architecture---Encode,
Shuffle, Analyze (ESA)---for performing such monitoring with high utility while
also protecting user privacy. The ESA design, and its Prochlo implementation,
are informed by our practical experiences with an existing, large deployment of
privacy-preserving software monitoring.
(cont.; see the paper
Open Transactions on Shared Memory
Transactional memory has arisen as a good way for solving many of the issues
of lock-based programming. However, most implementations admit isolated
transactions only, which are not adequate when we have to coordinate
communicating processes. To this end, in this paper we present OCTM, an
Haskell-like language with open transactions over shared transactional memory:
processes can join transactions at runtime just by accessing to shared
variables. Thus a transaction can co-operate with the environment through
shared variables, but if it is rolled-back, also all its effects on the
environment are retracted. For proving the expressive power of TCCS we give an
implementation of TCCS, a CCS-like calculus with open transactions
Automating Security Analysis: Symbolic Equivalence of Constraint Systems
We consider security properties of cryptographic protocols, that are either trace properties (such as confidentiality or authenticity) or equivalence properties (such as anonymity or strong secrecy). Infinite sets of possible traces are symbolically represented using deducibility constraints. We give a new algorithm that decides the trace equivalence for the traces that are represented using such constraints, in the case of signatures, symmetric and asymmetric encryptions. Our algorithm is implemented and performs well on typical benchmarks. This is the first implemented algorithm, deciding symbolic trace equivalence
A Machine-Checked Formalization of the Generic Model and the Random Oracle Model
Most approaches to the formal analyses of cryptographic protocols make the perfect cryptography assumption, i.e. the hypothese that there is no way to obtain knowledge about the plaintext pertaining to a ciphertext without knowing the key. Ideally, one would prefer to rely on a weaker hypothesis on the computational cost of gaining information about the plaintext pertaining to a ciphertext without knowing the key. Such a view is permitted by the Generic Model and the Random Oracle Model which provide non-standard computational models in which one may reason about the computational cost of breaking a cryptographic scheme. Using the proof assistant Coq, we provide a machine-checked account of the Generic Model and the Random Oracle Mode
Single Shot Temporal Action Detection
Temporal action detection is a very important yet challenging problem, since
videos in real applications are usually long, untrimmed and contain multiple
action instances. This problem requires not only recognizing action categories
but also detecting start time and end time of each action instance. Many
state-of-the-art methods adopt the "detection by classification" framework:
first do proposal, and then classify proposals. The main drawback of this
framework is that the boundaries of action instance proposals have been fixed
during the classification step. To address this issue, we propose a novel
Single Shot Action Detector (SSAD) network based on 1D temporal convolutional
layers to skip the proposal generation step via directly detecting action
instances in untrimmed video. On pursuit of designing a particular SSAD network
that can work effectively for temporal action detection, we empirically search
for the best network architecture of SSAD due to lacking existing models that
can be directly adopted. Moreover, we investigate into input feature types and
fusion strategies to further improve detection accuracy. We conduct extensive
experiments on two challenging datasets: THUMOS 2014 and MEXaction2. When
setting Intersection-over-Union threshold to 0.5 during evaluation, SSAD
significantly outperforms other state-of-the-art systems by increasing mAP from
19.0% to 24.6% on THUMOS 2014 and from 7.4% to 11.0% on MEXaction2.Comment: ACM Multimedia 201
- âŠ