1,048 research outputs found
A Novel Protocol-Authentication Algorithm Ruling Out a Man-in-the-Middle Attack in Quantum Cryptography
In this work we review the security vulnerability of Quantum Cryptography
with respect to "man-in-the-middle attacks" and the standard authentication
methods applied to counteract these attacks. We further propose a modified
authentication algorithm which features higher efficiency with respect to
consumption of mutual secret bits.Comment: 4 pages, submitted to the International Journal of Quantum
Information, Proceedings of the meeting "Foundations of Quantum Information",
Camerino, April 200
Practical Quantum Key Distribution with Polarization-Entangled Photons
We present an entangled-state quantum cryptography system that operated for
the first time in a real world application scenario. The full key generation
protocol was performed in real time between two distributed embedded hardware
devices, which were connected by 1.45 km of optical fiber, installed for this
experiment in the Vienna sewage system. The generated quantum key was
immediately handed over and used by a secure communication application.Comment: 5 pages, 3 figure
Experimental Quantum Coin Tossing
In this letter we present the first implementation of a quantum coin tossing
protocol. This protocol belongs to a class of ``two-party'' cryptographic
problems, where the communication partners distrust each other. As with a
number of such two-party protocols, the best implementation of the quantum coin
tossing requires qutrits. In this way, we have also performed the first
complete quantum communication protocol with qutrits. In our experiment the two
partners succeeded to remotely toss a row of coins using photons entangled in
the orbital angular momentum. We also show the experimental bounds of a
possible cheater and the ways of detecting him
Quantum teleportation using active feed-forward between two Canary Islands
Quantum teleportation [1] is a quintessential prerequisite of many quantum
information processing protocols [2-4]. By using quantum teleportation, one can
circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum
states to a party whose location is even unknown over arbitrary distances. Ever
since the first experimental demonstrations of quantum teleportation of
independent qubits [6] and of squeezed states [7], researchers have
progressively extended the communication distance in teleportation, usually
without active feed-forward of the classical Bell-state measurement result
which is an essential ingredient in future applications such as communication
between quantum computers. Here we report the first long-distance quantum
teleportation experiment with active feed-forward in real time. The experiment
employed two optical links, quantum and classical, over 143 km free space
between the two Canary Islands of La Palma and Tenerife. To achieve this, the
experiment had to employ novel techniques such as a frequency-uncorrelated
polarization-entangled photon pair source, ultra-low-noise single-photon
detectors, and entanglement-assisted clock synchronization. The average
teleported state fidelity was well beyond the classical limit of 2/3.
Furthermore, we confirmed the quality of the quantum teleportation procedure
(without feed-forward) by complete quantum process tomography. Our experiment
confirms the maturity and applicability of the involved technologies in
real-world scenarios, and is a milestone towards future satellite-based quantum
teleportation
High-fidelity transmission of entanglement over a high-loss freespace channel
Quantum entanglement enables tasks not possible in classical physics. Many
quantum communication protocols require the distribution of entangled states
between distant parties. Here we experimentally demonstrate the successful
transmission of an entangled photon pair over a 144 km free-space link. The
received entangled states have excellent, noise-limited fidelity, even though
they are exposed to extreme attenuation dominated by turbulent atmospheric
effects. The total channel loss of 64 dB corresponds to the estimated
attenuation regime for a two-photon satellite quantum communication scenario.
We confirm that the received two-photon states are still highly entangled by
violating the CHSH inequality by more than 5 standard deviations. From a
fundamental point of view, our results show that the photons are virtually not
subject to decoherence during their 0.5 ms long flight through air, which is
encouraging for future world-wide quantum communication scenarios.Comment: 5 pages, 3 figures, replaced paper with published version, added
journal referenc
In-field entanglement distribution over a 96 km-long submarine optical fibre
Techniques for the distribution of quantum-secured cryptographic keys have
reached a level of maturity allowing them to be implemented in all kinds of
environments, away from any form of laboratory infrastructure. Here, we detail
the distribution of entanglement between Malta and Sicily over a 96 km-long
submarine telecommunications optical fibre cable. We used this standard
telecommunications fibre as a quantum channel to distribute
polarisation-entangled photons and were able to observe around 257 photon pairs
per second, with a polarisation visibility above 90%. Our experiment
demonstrates the feasibility of using deployed submarine telecommunications
optical fibres as long-distance quantum channels for polarisation-entangled
photons. This opens up a plethora of possibilities for future experiments and
technological applications using existing infrastructure.Comment: 6 pages, 4 figure
Experimental Quantum Teleportation of a Two-Qubit Composite System
Quantum teleportation, a way to transfer the state of a quantum system from
one location to another, is central to quantum communication and plays an
important role in a number of quantum computation protocols. Previous
experimental demonstrations have been implemented with photonic or ionic
qubits. Very recently long-distance teleportation and open-destination
teleportation have also been realized. Until now, previous experiments have
only been able to teleport single qubits. However, since teleportation of
single qubits is insufficient for a large-scale realization of quantum
communication and computation2-5, teleportation of a composite system
containing two or more qubits has been seen as a long-standing goal in quantum
information science. Here, we present the experimental realization of quantum
teleportation of a two-qubit composite system. In the experiment, we develop
and exploit a six-photon interferometer to teleport an arbitrary polarization
state of two photons. The observed teleportation fidelities for different
initial states are all well beyond the state estimation limit of 0.40 for a
two-qubit system. Not only does our six-photon interferometer provide an
important step towards teleportation of a complex system, it will also enable
future experimental investigations on a number of fundamental quantum
communication and computation protocols such as multi-stage realization of
quantum-relay, fault-tolerant quantum computation, universal quantum
error-correction and one-way quantum computation.Comment: 16pages, 4 figure
Attacks on quantum key distribution protocols that employ non-ITS authentication
We demonstrate how adversaries with unbounded computing resources can break
Quantum Key Distribution (QKD) protocols which employ a particular message
authentication code suggested previously. This authentication code, featuring
low key consumption, is not Information-Theoretically Secure (ITS) since for
each message the eavesdropper has intercepted she is able to send a different
message from a set of messages that she can calculate by finding collisions of
a cryptographic hash function. However, when this authentication code was
introduced it was shown to prevent straightforward Man-In-The-Middle (MITM)
attacks against QKD protocols.
In this paper, we prove that the set of messages that collide with any given
message under this authentication code contains with high probability a message
that has small Hamming distance to any other given message. Based on this fact
we present extended MITM attacks against different versions of BB84 QKD
protocols using the addressed authentication code; for three protocols we
describe every single action taken by the adversary. For all protocols the
adversary can obtain complete knowledge of the key, and for most protocols her
success probability in doing so approaches unity.
Since the attacks work against all authentication methods which allow to
calculate colliding messages, the underlying building blocks of the presented
attacks expose the potential pitfalls arising as a consequence of non-ITS
authentication in QKD-postprocessing. We propose countermeasures, increasing
the eavesdroppers demand for computational power, and also prove necessary and
sufficient conditions for upgrading the discussed authentication code to the
ITS level.Comment: 34 page
Heralded single photon absorption by a single atom
The emission and absorption of single photons by single atomic particles is a
fundamental limit of matter-light interaction, manifesting its quantum
mechanical nature. At the same time, as a controlled process it is a key
enabling tool for quantum technologies, such as quantum optical information
technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission
and absorption will allow implementing quantum networking scenarios [1, 7, 8,
9], where photonic communication of quantum information is interfaced with its
local processing in atoms. In studies of single-photon emission, recent
progress includes control of the shape, bandwidth, frequency, and polarization
of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the
demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption
of a single photon by a single atom is much less investigated; proposals exist
but only very preliminary steps have been taken experimentally such as
detecting the attenuation and phase shift of a weak laser beam by a single atom
[21, 22], and designing an optical system that covers a large fraction of the
full solid angle [23, 24, 25]. Here we report the interaction of single
heralded photons with a single trapped atom. We find strong correlations of the
detection of a heralding photon with a change in the quantum state of the atom
marking absorption of the quantum-correlated heralded photon. In coupling a
single absorber with a quantum light source, our experiment demonstrates
previously unexplored matter-light interaction, while opening up new avenues
towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure
- …
