119 research outputs found

    Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy

    Get PDF
    The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown

    Analog approach for the eigen-decomposition of positive definite matrices

    Get PDF
    AbstractThis paper proposes an analog approach for performing the eigen-decomposition of positive definite matrices. We show analytically and by simulations that the proposed circuit is guaranteed to converge to the desired eigenvectors and eigenvalues of positive definite matrices

    Characterization of an ester-based core-multishell (CMS) nanocarrier for the topical application at the oral mucosa

    Get PDF
    Objectives Topical drug administration is commonly applied to control oral inflammation. However, it requires sufficient drug adherence and a high degree of bioavailability. Here, we tested the hypothesis whether an ester-based core-multishell (CMS) nanocarrier is a suitable nontoxic drug-delivery system that penetrates efficiently to oral mucosal tissues, and thereby, increase the bioavailability of topically applied drugs. Material and methods To evaluate adhesion and penetration, the fluorescence-labeled CMS 10-E-15-350 nanocarrier was applied to ex vivo porcine masticatory and lining mucosa in a Franz cell diffusion assay and to an in vitro 3D model. In gingival epithelial cells, potential cytotoxicity and proliferative effects of the nanocarrier were determined by MTT and sulphorhodamine B assays, respectively. Transepithelial electrical resistance (TEER) was measured in presence and absence of CMS 10-E-15-350 using an Endohm-12 chamber and a volt-ohm-meter. Cellular nanocarrier uptake was analyzed by laser scanning microscopy. Inflammatory responses were determined by monitoring pro-inflammatory cytokines using real-time PCR and ELISA. Results CMS nanocarrier adhered to mucosal tissues within 5 min in an in vitro model and in ex vivo porcine tissues. The CMS nanocarrier exhibited no cytotoxic effects and induced no inflammatory responses. Furthermore, the physical barrier expressed by the TEER remained unaffected by the nanocarrier. Conclusions CMS 10-E-15-350 adhered to the oral mucosa and adhesion increased over time which is a prerequisite for an efficient drug release. Since TEER is unaffected, CMS nanocarrier may enter the oral mucosa transcellularly. Clinical relevance Nanocarrier technology is a novel and innovative approach for efficient topical drug delivery at the oral mucosa

    Nanocrystals for Improved Drug Delivery of Dexamethasone in Skin Investigated by EPR Spectroscopy

    Get PDF
    Nanocrystals represent an improvement over the traditional nanocarriers for dermal application, providing the advantages of 100% drug loading, a large surface area, increased adhesion, and the potential for hair follicle targeting. To investigate their advantage for drug delivery, compared to a base cream formulation, dexamethasone (Dx), a synthetic glucocorticoid frequently used for the treatment of inflammatory skin diseases, was covalently linked with the paramagnetic probe 3-(carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) to DxPCA. To investigate the penetration efficiency between these two vehicles, electron paramagnetic resonance (EPR) spectroscopy was used, which allows the quantification of a spin-labeled drug in different skin layers and the monitoring of the drug release. The penetration behavior in excised healthy and barrier-disrupted porcine skin was monitored by EPR, and subsequently analyzed using a numerical diffusion model. As a result, diffusion constants and free energy values in the different layers of the skin were identified for both formulations. Dx-nanocrystals showed a significantly increased drug amount that penetrated into viable epidermis and dermis of intact (factor 3) and barrier-disrupted skin (factor 2.1) compared to the base cream formulation. Furthermore, the observed fast delivery of the spin-labeled drug into the skin (80% DxPCA within 30 min) and a successive release from the aggregate unit into the viable tissue makes these nanocrystals very attractive for clinical applications

    Bridging the Semantic Web and NoSQL Worlds: Generic SPARQL Query Translation and Application to MongoDB

    Get PDF
    International audienceRDF-based data integration is often hampered by the lack of methods to translate data locked in heterogeneous silos into RDF representations. In this paper, we tackle the challenge of bridging the gap between the Semantic Web and NoSQL worlds, by fostering the development of SPARQL interfaces to heterogeneous databases. To avoid defining yet another SPARQL translation method for each and every database, we propose a two-phase method. Firstly, a SPARQL query is translated into a pivot abstract query. This phase achieves as much of the translation process as possible regardless of the database. We show how optimizations at this abstract level can save subsequent work at the level of a target database query language. Secondly, the abstract query is translated into the query language of a target database, taking into account the specific database capabilities and constraints. We demonstrate the effectiveness of our method with the MongoDB NoSQL document store, such that arbitrary MongoDB documents can be aligned on existing domain ontologies and accessed with SPARQL. Finally, we draw on a real-world use case to report experimental results with respect to the effectiveness and performance of our approach

    Beschreibung linearer kontinuierlicher Systeme im Zeitbereich

    No full text
    corecore