685 research outputs found

    Seismic protection of rocking structures with inerters

    Get PDF
    The seismic behaviour of a wide variety of structures can be characterized by the rocking response of rigid blocks. Nevertheless, suitable seismic control strategies are presently limited and consist mostly on preventing rocking motion all together, which may induce undesirable stress concentrations and lead to impractical interventions. In this paper, we investigate the potential advantages of using supplemental rotational inertia to mitigate the effects of earthquakes on rocking structures. The newly proposed strategy employs inerters, which are mechanical devices that develop resisting forces proportional to the relative acceleration between their terminals and can be combined with a clutch to ensure their rotational inertia is only employed to oppose the motion. We demonstrate that the inclusion of the inerter effectively reduces the frequency parameter of the block, resulting in lower rotation seismic demands and enhanced stability due to the well-known size effects of the rocking behaviour. The effects of the inerter and inerter-clutch devices on the response scaling and similarity are also studied. An examination of their overturning fragility functions reveals that inerter-equipped structures experience reduced probabilities of overturning in com- parison with un-controlled bodies, while the addition of a clutch further improves their seismic stability. The concept advanced in this paper is particularly attractive for the protection of rocking bodies as it opens the possibility of non-locally modifying the dynamic response of rocking structures without altering their geometry

    Dynamic response of post-tensioned rocking structures with inerters

    Get PDF
    Post-tensioned rocking systems have proved to be highly effective in controlling structural damage during strong ground motions. However, recent events have highlighted the importance of looking at both the structural and non-structural components within a holistic framework. In this context, the high rotations and accelerations associated with the rocking motion can cause significant non-structural damage and affect the performance and functionality of the entire system. In this paper, we examine analytically the fundamental dynamics of post-tensioned rocking structures and investigate the bene fits of using supplemental rotational inertia to reduce their seismic demands and improve their overall performance. The newly proposed strategy employs inerters, a mechanical device that develops a resisting force proportional to the relative acceleration between its terminals. Analyses conducted for a wide range of acceleration pulses and real pulse-like ground motions show that post-tensioned structures equipped with inerters consistently experience lower demands and have reduced probabilities of exceeding limit states typically associated with damage. Importantly, the new vibration control strategy advanced in this paper opens the door for an expedient modification of the fundamental dynamic response of rocking systems without altering their geometry

    How Well has Land-Use Planning Worked Under Different Governance Regimes? A Case Study in the Portland, OR-Vancouver, WA Metropolitan Area, USA

    Get PDF
    We examine land use planning outcomes over a 30-year period in the Portland, OR-Vancouver, WA (USA) metropolitan area. The four-county study region enables comparisons between three Oregon counties subject to Oregon’s 1973 Land Use Act (Senate Bill 100) and Clark County, WA which implemented land use planning under Washington’s 1990 Growth Management Act. We describe county-level historical land uses from the mid-1970s to the mid-2000s, including low-density residential and urban development, both outside and inside of current urban growth boundaries. We use difference-in-differences models to test whether differences in the proportions of developed land resulting from implementation of urban growth boundaries are statistically significant and whether they vary between Oregon and Washington. Our results suggest that land use planning and urban growth boundaries now mandated both in Oregon and Washington portions of the study area have had a measurable and statistically significant effect in containing development and conserving forest and agricultural lands in the Portland-Vancouver metropolitan area. Our results also suggest, however, that these effects differ across the four study-area counties, likely owing in part to differences in counties’ initial levels of development, distinctly different land use planning histories, and how restrictive their urban growth boundaries were drawn

    Impact and clutch nonlinearities in the seismic response of inerto-rocking systems

    Get PDF
    Rocking bodies can be found at all structural scales, from small museum exhibits to uplifting buildings. These structures, whose dynamic stability springs from the difficulty of mobilizing their rotational inertia, are ideal candidates for benefiting from the supplemental inertia provided by inerters. This benefit can be limited, however, if the inerter drives the structural response towards potentially undesirable motions by transferring back the kinetic energy accumulated within it at inconvenient times. To control this phenomenon, a clutching system can be employed to direct the interaction between the interter and the structure improving further its dynamic behaviour. To date, however, most of the studies dealing with clutching inerto-elastic or inerto-rocking systems under seismic excitation have adopted a rather simplistic idealisation of the clutch engagement-disengagement response. In this paper, we re-visit the impact effects on inerto-rocking structures and propose an improved mechanistic model of the clutching system. First, the effects of the inerter on the transition upon impact and the impact effects on the acceleration response of rocking blocks are analysed. Then, a set of original analytical expressions for rigid and flexible rocking structures equipped with a pair of clutched inerters are derived. The newly proposed models are used to examine the evolution of the energy dissipation in the device and the influence of key parameters like the clutch stiffness, gears play, viscous damping and dry friction on its response. We conclude by evaluating the behaviour of the detailed rocking model with clutched inerters to a set of realistic earthquake ground motions. Although important differences are observed in the evolution of energy dissipation and engagement response depending on the type and characteristics of the clutch model, largely comparable peak values of displacement are obtained. On the other hand, a more accurate representation of the clutch behaviour leads to potentially larger acceleration demands. Our analyses also show that, in general, the inclusion of the inerter results in higher coefficients of restitution, indicating lower energy dissipation during impact and that the infinite acceleration spikes predicted by Housner’s model can be ignored if impact forces are sufficiently distributed over time as to cause continuous velocity transitions, but sharp enough not to appreciably affect the rotation response

    Optimal testing policies for diagnosing patients with intermediary probability of disease

    Get PDF
    This paper proposes a stochastic shortest path approach to find an optimal sequence of tests to confirm or discard a disease, for any prescribed optimality criterion. The idea is to select the best sequence in which to apply a series of available tests, with a view at reaching a diagnosis with minimum expenditure of resources. The proposed approach derives an optimal policy whereby the decision maker is provided with a test strategy for each a priori probability of disease, aiming to reach posterior probabilities that warrant either immediate treatment or a not-ill diagnosis

    The spectrum of COVID-19-associated dermatologic manifestations: an international registry of 716 patients from 31 countries

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19) has associated cutaneous manifestations. OBJECTIVE: To characterize the diversity of cutaneous manifestations of COVID-19, and facilitate understanding of underlying pathophysiology. METHODS: Case series from an international registry from the American Academy of Dermatology and International League of Dermatological Societies. RESULTS: The registry collected 716 cases of new-onset dermatologic symptoms in patients with confirmed/suspected COVID-19. Of the 171 patients in the registry with laboratory-confirmed COVID-19, the most common morphologies were morbilliform (22%), pernio-like (18%), urticarial (16%), macular erythema (13%), vesicular (11%), papulosquamous (9.9%), and retiform purpura (6.4%). Pernio-like lesions were common in patients with mild disease, while retiform purpura presented exclusively in ill, hospitalized patients. LIMITATIONS: We cannot estimate incidence or prevalence. Confirmation bias is possible. CONCLUSION: This study highlights the array of cutaneous manifestations associated with COVID-19. Many morphologies were non-specific, while others may provide insight into potential immune or inflammatory pathways in COVID-19 pathophysiology

    Cutaneous reactions reported after Moderna and Pfizer COVID-19 vaccination: A registry-based study of 414 cases

    Get PDF
    BACKGROUND: Cutaneous reactions after messenger RNA (mRNA)-based COVID-19 vaccines have been reported but are not well characterized. OBJECTIVE: To evaluate the morphology and timing of cutaneous reactions after mRNA COVID-19 vaccines. METHODS: A provider-facing registry-based study collected cases of cutaneous manifestations after COVID-19 vaccination. RESULTS: From December 2020 to February 2021, we recorded 414 cutaneous reactions to mRNA COVID-19 vaccines from Moderna (83%) and Pfizer (17%). Delayed large local reactions were most common, followed by local injection site reactions, urticarial eruptions, and morbilliform eruptions. Forty-three percent of patients with first-dose reactions experienced second-dose recurrence. Additional less common reactions included pernio/chilblains, cosmetic filler reactions, zoster, herpes simplex flares, and pityriasis rosea-like reactions. LIMITATIONS: Registry analysis does not measure incidence. Morphologic misclassification is possible. CONCLUSIONS: We report a spectrum of cutaneous reactions after mRNA COVID-19 vaccines. We observed some dermatologic reactions to Moderna and Pfizer vaccines that mimicked SARS-CoV-2 infection itself, such as pernio/chilblains. Most patients with first-dose reactions did not have a second-dose reaction and serious adverse events did not develop in any of the patients in the registry after the first or second dose. Our data support that cutaneous reactions to COVID-19 vaccination are generally minor and self-limited, and should not discourage vaccination

    A convolute diversity of the Auriculariales (Agaricomycetes, Basidiomycota) with sphaeropedunculate basidia

    Get PDF
    Morphological and DNA data show that effused representatives of the Auriculariales (Basidiomycota) with sphaeropedunculate basidia belong to eleven genera of which seven are dealt with in this study. Among them, Myxarium is the largest genus containing 21 accepted species of which nine are reintroduced below and five are described as new. Protodontia is limited to three species only, P. subgelatinosa (the generic type) and two newly described species from Africa. Protoacia is a new monotypic genus for P. delicata, sp. nov., widely distributed on coniferous hosts in Eurasia. Myxariellum is erected for two new species with smooth hymenophore from northwestern North America while Gelacantha is introduced for G. pura, a new species with hydnoid hymenophore from Caucasus. Our data do not confirm the present synonymy of Sebacina sphaerospora with Tremella glaira, and these species are placed in two separate genera - Hydrophana, gen. nov., and Ofella, gen. nov., respectively. A key to European Myxarium and similar-looking species is included.Peer reviewe
    corecore