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Abstract

Post-tensioned rocking systems have proved to be highly effective in controlling structural damage during

strong ground motions. However, recent events have highlighted the importance of looking at both the

structural and non-structural components within a holistic framework. In this context, the high rotations and

accelerations associated with the rocking motion can cause significant non-structural damage and affect the

performance and functionality of the entire system. In this paper, we examine analytically the fundamental

dynamics of post-tensioned rocking structures and investigate the benefits of using supplemental rotational

inertia to reduce their seismic demands and improve their overall performance. The newly proposed strategy

employs inerters, a mechanical device that develops a resisting force proportional to the relative acceleration

between its terminals. Analyses conducted for a wide range of acceleration pulses and real pulse-like ground

motions show that post-tensioned structures equipped with inerters consistently experience lower demands

and have reduced probabilities of exceeding limit states typically associated with damage. Importantly, the

new vibration control strategy advanced in this paper opens the door for an expedient modification of the

fundamental dynamic response of rocking systems without altering their geometry.
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1. Introduction

Controlled rocking of structures can significantly reduce the moments that develop at their base during

strong ground shaking. This fact was already recognized by Housner [1], who motivated by the good

performance of tall slender structures during several earthquakes, studied the planar dynamic behaviour of

rigid bodies and derived analytical equations that describe their rocking motion. During the last decades,5

this concept has been widely applied to the development of post-tensioned buildings that aim to limit the

structural damage during severe earthquakes [2–4]. Popular among these applications are post-tensioned

rocking walls [5, 6], where the structural members are free to uplift and rock while post-tensioned tendons

are incorporated to increase the lateral strength and recentring capabilities of the structure. Additional

energy dissipation can be provided through unbounded mild steel reinforcement or external devices such as10

U-shaped flexural plates (UFPs) [7].

The structural performance of post-tensioned rocking systems has been extensively studied both analyt-

ically and numerically. Pampanin et al. [8] proposed a section analysis method suitable for post-tensioned
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connections, while Spieth et al. [9] developed a multi-spring contact element capable of accurately mod-

elling the global behaviour of rocking frames, including local effects such as neutral axis shift. This element15

was subsequently adapted for the analysis of post-tensioned rocking walls by Pennucci et al. [10]. On

the other hand, extensive experimental programmes have been conducted on concrete [7] and timber[11]

post-tensioned walls. Their results have shown that post-tensioned systems have good ductility and energy

dissipation characteristics, making them an attractive alternative in seismic-prone regions.

Modern design frameworks generally quantify seismic risk in terms of overall performance, looking at20

both the structural and non-structural components [12]. Although rocking post-tensioned systems have

proved to be highly effective in controlling structural damage, very limited attention has been dedicated

to the associated rotation and acceleration demands. Vassiliou and Makris[13] built on Housner’s model

and studied the dynamic response of a vertically restrained solitary rocking column, concluding that post-

tensioned tendons can reduce rotation demands in smaller columns subjected to long-period excitations25

but have little effect on taller structures. However, no assessment of the effects on the acceleration levels

was offered. Aragaw and Calvi[14] examined the non-linear response of a set of base-rocking wall buildings

and proposed two simplified methodologies to estimate floor acceleration spectra in this type of structures.

Their study highlighted the importance of an adequate consideration of seismic accelerations in the design

of non-structural elements and points out the necessity for control strategies to limit these demands.30

Research on seismic control systems for rocking structures has been mainly oriented to the protection

of museum artefacts and non-structural equipment [15–17]. Consequently, most strategies have focused on

preventing overturning using simple measures, such as modifying the centre of mass or using fixed and

semi-active anchorages [18, 19]. Although these proposals can reduce the overturning vulnerability of free-

standing bodies, they can also induce undesirable stresses and are generally not suitable for rocking building35

structures. Alternative passive approaches have also been proposed by a number of researchers, aiming to

reduce the seismic demands without preventing the rocking behaviour. De Leo et al. [20] studied the use

of a pendulum mass damper hinged at the top of a rigid block, showing that the system is effective for a

limited range of frequencies.

A seismic control strategy that has been gaining increasing attention over the last years is the use40

of supplemental rotational inertia. Several types of inerters, a mechanical component that develops a

resisting force proportional to the relative acceleration between its terminals [21], have been developed and

proposed to control vibrations in civil structures[22–27]. Arakaki et al.[28] suggested a damper formed of

a cylindrical mass rotating inside a chamber filled with a viscous fluid, while Makris and Kampas [29] and

Málaga-Chuquitaype et al. [30] highlighted the benefits of incorporating clutch-inerter systems. All these45

studies have focused on the protection of fixed-based structures, where the seismic-induced displacements

are controlled primarily via stiffness, damping and strength [31, 32]. In the case of rocking structures, the

dominant motion is rotational and the seismic stability originates mainly from the difficulty of mobilizing

their rotational inertia [33]. In this context, Thiers-Moggia and Málaga-Chuquitaype [34] proposed the use

of supplemental rotational inertia to enhance the seismic performance of rocking structures. They showed50

that the inclusion of inerters effectively reduces the frequency parameter of a block, resulting in lower

rotation seismic demands and enhanced stability due to the well-known size effects of the rocking behaviour

[1]. However, their study concentrated on the fundamental behaviour of free-rocking structures and did not

consider the effects of post-tensioning or the possibility of having different seismic and gravitational masses
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as is customary for new building applications.55

In this paper we examine the seismic rocking response and associated demands in post-tensioned rigid

walls equipped with supplemental rotational inertia devices. Firstly, based on Housner’s idealizations we

develop a simple single-degree-of-freedom model representative of post-tensioned rocking systems. Secondly,

the effect of the vertical tendons in the rocking response of the structure is assessed in terms of maximum

rotations and peak angular accelerations for a wide range of pulse excitations. Subsequently, the inerter60

device is introduced and original equations that describe the rocking motion of the post-tensioned wall-inerter

system are derived. In addition to the reductions in rotation and acceleration demands, the effects of the

inerter on the base shear are also evaluated. Finally, a probabilistic assessment of the seismic performance

of a typical building structure is conducted using a set of 202 pulse-like ground motions obtained from the

Pacific Earthquake Engineering Research Center (PEER) database. Our results demonstrate that post-65

tensioned rocking structures equipped with inerters experience smaller rotation and acceleration demands

than unprotected ones and have lower probabilities of exceeding limit states associated with non-structural

damage.

2. Fundamental dynamics of a free-standing rocking wall

The free-standing rigid block considered in Housner’s [1] early study corresponds to a particular case in70

which the only mass mobilized by the horizontal and gravity accelerations is the mass of the body itself. This

assumption is reasonable for many rocking objects, such as museum artefacts and non structural equipment,

but is not usually valid for rocking building structures. In these cases, additional masses attached to the

structural elements change the inertial forces and the use of gravity resistance systems (e.g. gravity frames)

or in-plane lateral resistance elements (e.g rectangular walls) can modify the ratio between the tributary75

seismic mass, msis, and the gravity load, W , exerting the restoring moment (Figure 1).

(a) Vertical gravity elements (indicated in brown) and their cor-
responding tributary areas (Ai).

(b) Seismic mass taken by each lateral resistant element (red: X
direction, blue: Y direction).

Figure 1: Example of the distribution of gravity loads and seismic masses in building structures.

The dynamic response of such structures can be better represented by the model depicted in Figure 2,

where the rigid free-standing wall is free to rotate about points O and O’, and appropriate arrangements to

prevent slipping (such as shear keys) have been considered. In addition, the application of rocking systems to

building structures generally comprises capacity design procedures for the structural elements. Accordingly,80
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it is reasonable to assume that the structures will respond in the elastic range. Our study examines the

response of such systems considering a simplified model of a rigid body, therefore disregarding the effect of

the elastic deformations in the block. It is recognized that these deformations may alter the efficiency of the

inerter in very flexible structures, although this problem is beyond the scope of this work If a diaphragm

connection with rotational decoupling is assumed (e.g. large diameter pin[35]), the seismic mass and gravity85

loads can be concentrated and considered to act at point C. The geometry of the wall is characterized by

the slenderness α and the size parameter R, while its rotation is measured by the angle θ. Impact is treated

following Housner’s approach [1], considering the coefficient of restitution as an independent parameter and

equal to η = 0.85. This formulation assumes that impact forces concentrate at the pivot point, dissipating

energy instantaneously and causing an immediate change of velocity and infinite acceleration. More recent90

experimental and analytical studies have shown that the consideration of distributed impact forces lead to a

more realistic prediction of the acceleration response[36]. Moreover, it has been shown that in these cases the

maximum acceleration demands are governed by the rocking response in between impacts[37]. Consequently,

the acceleration spikes predicted by Housner’s model are not considered when assessing acceleration demands

throughout this paper.95

Figure 2: Single-degree-of-freedom system with a concentrated mass on the top and an independent gravity load W, represen-
tative of a structural rocking wall.

In most practical building applications the rotational inertia and weight of the rocking element are

significantly smaller than the corresponding translational seismic mass, msis, and tributary gravity load,

W , and can be neglected. Then, under a horizontal ground excitation, üg, the rigid wall uplifts and starts

rocking if:

üg ≥
g

mratio
tanα (1)

where mratio = msis/mg is the ratio between the seismic mass and the gravitational mass associated to

the gravity load transferred to the wall (i.e. mg = W/g). Evaluating the rotational equilibrium around the

rocking pivot point gives (Figure 2):

θ̈���
0

I0 +msisR
2 θ̈ +WR sin(α sgn(θ)− θ) = −msis üg R cos(α sgn(θ)− θ) (2)
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The equation above can be rearranged and presented in a compact form:100

θ̈ = −p2
w

(
sin(α sgn(θ)− θ) +mratio

üg
g

cos(α sgn(θ)− θ)
)

(3)

where pw is the frequency parameter of the rigid rocking element defined as

pw =

√
g

Rmratio
(4)

2.1. Response scaling and similarity

The dynamic response of the classic rocking block studied by Housner[1] is governed by 4 independent

dimensionless parameters[38].

θmax = f

(
ωg
p
,
ag
g
, α , η

)
(5)

Equation 3 and Equation 4 show that the ratio between the seismic and gravitational masses in a rocking105

building divide the gravity acceleration, g. Therefore, the response of a rocking building wall is governed

by:

θmax = f

(
ωg
pw

,
agmratio

g
, α , η

)
(6)

For most practical applications the wall slenderness, α, will be smaller than 20◦ (e.g. lw = 3[m] and

H = 9[m] → α = 9.5◦), and the dimension-orientationless properties developed by Dimitrakopoulos and

DeJong [38] for slender blocks can be applied:110

θmax g

agmratio
= φ

(
ωg
pw

,
agmratio

g tanα
, η

)
(7)

Figure 3 compares the response of two different slender blocks of equivalent dimension-orientationless

parameters (agmratio/g tanα = 23.3 and η = 0.85), subjected to a pulse excitation of frequency ratio

ωg/pw = 8. It is evident from Figure 3 that, when presented in terms of the proposed parameters, the

responses collapse into a single master curve.

2.2. Rocking response under pulse excitations115

The rocking response of free-standing blocks is usually studied by means of rocking spectra, like the one

presented in Figure 4a. This representation consist of contour plots of the normalized response variable

in the frequency ratio (ωg/pw) and acceleration amplitude plane (agmratio/g tanα), for a block of a given

slenderness α. In this study, symmetric Ricker wavelets [39, 40] (Equation 8) are used as pulse excitations.

This analytical wavelet has been shown to satisfactorily approximate the coherent pulse of several pulse-like120

ground motions[41].

üg(t) = ag

(
1− 2π2t2

T 2
g

)
e
−π2t2

T2
g (8)
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Figure 3: Response of two rocking structures of different shape and size but equivalent dimension-orientionless parameters
(Block 1: R1 = 5[m], α1 = 5◦ and mratio,1 = 10; Block 2: R2 = 10[m], α2 = 10◦ and mratio,2 = 5). When the results are
presented in dimension-orientionless terms both structures converge to a unique response.

where Tg = 2π/ωg is the period that maximizes the Fourier spectrum of the symmetric Ricker wavelet,

and ag is the acceleration amplitude.

As noted in the previous section, the mass ratio has two competing effects on the dynamic response of125

the wall. On the one hand it reduces the frequency parameter, pw, improving the global stability of the

system (size effect of rocking behaviour[1]), while on the other hand it amplifies the ground acceleration.

These effects can be examined with reference to Figure 4. Figure 4b shows the maximum rotation response

of a given block (R = 5[m] and α = 10◦) subjected to a symmetric Ricker pulse of acceleration amplitude

ag = g tanα and frequency ωg = 2.8[rad/s] for different values of mass ratio. The path followed by the130

block on the frequency ratio-acceleration amplitude plane is indicated with a white dashed line in Figure

4a.

The low mass ratio area of the spectrum shown in Figure 4b (or low frequency ratio according to Equation

4) show that small increments in the seismic mass cause the response to swiftly change from no-uplifting

to overturning. As the mass ratio keeps increasing, the shift in the frequency parameter, pw, takes the135

block outside of the overturning regions (indicated in blue and red in Figure 4a) and into the safe rocking
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(a) Rocking spectrum for α = 10◦. (b) Effect of mratio for a given block.

Figure 4: Effect of increasing mratio in the dynamic response of a rocking structure subjected to Ricker pulse ground motions.
The white line in a) describes the path followed by the system in the rocking spectra.

area. The maximum rotation response then keeps decreasing until it starts surging again in the high mass

ratio region (or high frequency ratio), although without reaching the overturning condition. In real rocking

building structures, the mass ratio usually ranges from 1 (Housner’s rocking block) to well over 10 in cases

where the rocking element is only used as a lateral resistant system and the gravity loads are supported by140

secondary elements.

3. Dynamics of post-tensioned rocking systems

In post-tensioned rocking walls, the structural member is free to uplift and rock while post-tensioned

tendons are incorporated to increase the lateral resistance and recentering capabilities of the building.

Additional energy dissipation can be introduced by adding unbounded steel bars or external dissipation145

devices. This type of structures can be studied considering the model presented in Figure 5, where the

rocking structure analysed in the previous section has been connected to the base through an elastic tendon

passing through its middle. When the system of Figure 5 rotates the weight, W , and the force in the vertical

tendon, Fpt, exert a restoring moment, Mr.

The post-uplifting stiffness of a free-standing wall (as the one studied in Section 2) is negative, since the150

line of action of the weight approaches the pivot point as rotation increases, reducing the lever arm of the

restoring moment. By contrast, when elastic tendons are incorporated, the rotation of the wall increases the

recentering elastic force, providing a positive stiffness that is added to the negative stiffness of the rocking

block. The elongation of the tendon ,e, can be expressed as a function of the rotation θ (Figure 5):

e = R sinα
√

2
√

1− cos θ (9)
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Figure 5: Post-tensioned rigid rocking structure under a horizontal ground excitation. The relation between base rotation and
tendon elongation is also illustrated.

and the force in the post-tensioned tendon is:155

Fpt =
EAe

R cosα
+ P0 = EA tanα

√
2
√

1− cos θ + P0 (10)

where EA/R cosα is the axial stiffness of the vertical tendon and P0 is the initial post-tensioning force. For

a positive rotation (θ > 0), the total restoring moment is given by:

Mr(θ) = WR sin(α− θ) + FptR sinα cos
θ

2
(11)

Replacing Equation 10 into Equation 11 yields:

Mr(θ) = WR sin(α− θ) +R sinα

(
EA tanα sin θ + P0

√
1 + cos θ

2

)
(12)

which can be rearranged as:

Mr(θ)

WR
= sinα

(
cos θ +

P0

W

√
1 + cos θ

2
+ sin θ

(
EA

W
tanα− cotα

))
(13)

If small rotations are considered (small θ), Equation 13 can be linearized such that:

Mr(θ)

WR
= sinα

(
1 +

P0

W
+ θ

(
EA

W
tanα− cotα

))
(14)

The term multiplying θ in Equation 14 corresponds to the stiffness of the system after uplifting. There-

fore, the linearized condition to obtain a positive post-uplift stiffness is:160

EA

W
>

1

tan2 α
(15)
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This condition is equivalent to the expression obtained by Vassiliou and Makris [13] for vertically re-

strained classic rocking blocks. Figure 6 compares the moment-rotation response of post-tensioned rocking

walls for different levels of normalized elastic force (EA/W ) and initial post-tension force (P0/W ). As

expected, the axial stiffness of the tendon only modifies the slope of the response after uplifting. On the

other hand, the initial post-tensioning force increases the uplift threshold and therefore shifts the curves in165

Figure 6b vertically.

(a) No initial pre-stress (P0/mg = 0). (b) Constant tendon stiffness: EA
mg = 3

2
1

tan2 α
.

Figure 6: Effect of a) the tendon stiffness, EA/W , and b) initial post-tensioning force, P0/W , on the moment rotation relation
of the rocking wall.

When msis crosses the pivot point a free-standing system becomes unstable. However, quick changes

in the base acceleration may force the block back to a stable rocking position. Accordingly, overturning is

only defined when the rotation response reaches an arbitrarily large value (θ ≈ 90◦). On the other hand,

the introduction of the post-tensioning increases the stiffness of the uplifted system, displacing the stability170

limit to higher rotations. If the post-uplift stiffness reaches a non-negative value, the system becomes,

theoretically, unconditionally stable. In real applications, however, the capacity of the structure will be

defined by the yield strength of the rocking surface and the post-tensioned tendons.”

3.1. Free vibrations response of post-tensioned rocking systems

With reference to Figure 5, the evaluation of the rotational equilibrium about the rocking pivot point175

gives:

msisR
2 θ̈ + WR sin(α− θ) +R sinα

(
EA tanα sin θ + P0

√
1 + cos θ

2

)
= 0 (θ > 0) (16)
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Introducing the frequency parameter, pw =
√
g/Rmratio, and rearranging leads to:

θ̈ = −p2
w

(
sin(α− θ) + sinα

(
EA

W
tanα sin θ +

P0

W

√
1 + cos θ

2

))
(17)

Equation 17 can be linearized if slender blocks are considered (α ≤ 20◦), such that:

θ̈ − p2
w

(
1− EA

W
α2

)
θ = −p2

wα

(
1 +

P0

W

)
(18)

If the post-uplift stiffness of the wall is null (EAα2/W = 1), the second term of the left-hand side of

Equation 18 becomes zero, as the restoring moment is independent from the rotation amplitude. Therefore,180

for a wall released from rest (θ̇(0) = 0) with an initial rotation θ0, the solution of Equation 18 is defined by

parts as:

θ(t) =


α
(

1+
P0
W

)
1−EA

W α2 −
(
α
(

1+
P0
W

)
1−EA

W α2 − θ0

)
cosh

(
pw t

√
1− EA

W α2
) (

EAα2/W 6= 1
)

−α2 pw t
2
(

1+
P0
W

)
2 + θ0

(
EAα2/W = 1

) (19)

Equation 19 describes the motion of the wall as it rotates back to the vertical position. If there is no energy

dissipation during impact, the block will then rotate in the negative direction (−θ) reaching a maximum185

amplitude of −θ0, and fall back to reach its initial position. The time required to complete this cycle of

oscillation is the period of free vibration. Following Housner’s [1] reasoning, the time needed to go from

θ = θ0 to θ = 0 corresponds to T/4. Therefore:

Tpw = φ

(
θ0

α
,
EAα2

W
,
P0

W

)
=



4√
1−EA

W α2
cosh−1

 1

1−
θ0

(
1−EA

W
α2

)
α

(
1+

P0
W

)


(
EAα2/W 6= 1

)

4
√

2 θ0

α
(

1+
P0
W

) (
EAα2/W = 1

)
(20)

190

Equation 20 shows that for a post-tensioned block of a given mass ratio and geometry (pw and α), the

period of oscillation, T , depends on the initial rotation, θ0, the dimensionless elastic force, EA/W , and

the dimensionless post-tension force, P0/W . Figure 7 plots this expression for fixed values of θ/α, P0/W

and EAα2/W . As expected, Figure 7a shows that the period of oscillation decreases for higher values of

initial post-tension and elastic forces. This effect is more significant closer to the origin (P0/W ≤ 2 and195

EAα2/W ≤ 1) and becomes less important for higher values of vertical forces. On the other hand, Housner’s

early study already identified that the period of oscillation of a rocking body strongly depends on the initial
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rotation amplitude[1]. The plots presented in Figure 7b and Figure 7c are consistent with this finding,

showing that higher values of θ0/α correspond to longer periods of oscillation. Moreover, the influence of

the post-tensioned tendon is more important for initial rotations close to α, and becomes insignificant for200

small values of θ0/α.

(a) Initial rotation, θ0/α = 0.5. (b) Post-tensioning force P0/W = 2.

(c) Elastic force EAα2/W = 1.5 (positive stiffness after uplift-
ing).

Figure 7: Effect of the initial rotation (θ/α), elastic force (EA/mg), and initial post-tensioning force (P0) on the period of
oscillation of a post-tensioned rocking structure.
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3.2. Seismic response of post-tensioned structural walls

When subjected to a horizontal ground excitation, üg, the post-tensioned rigid wall shown in Figure 5

uplifts and starts rocking when

üg ≥
(
P0

W
+ 1

)
g

mratio
tanα (21)

Evaluating the rotational equilibrium of the post-tensioned wall about the pivot points (positive and

negative directions) gives:

msisR
2 θ̈ + WR sin(α sgn(θ)− θ) + sgn(θ)FptR sinα cos

θ

2
= −msis ügR cos(α sgn(θ)− θ) (22)

Combining Equations 10 and 22, and introducing the frequency parameter, pw =
√
g/Rmratio, yields:205

θ̈ = −p2
w

(
sin(α sgn(θ)−θ)+mratio

üg
g

cos(αsgn(θ)−θ)+sinα

(
EA

W
tanα sin θ+sgn(θ)

P0

W

√
1 + cos θ

2

))
(23)

which is equivalent to the expression derived by Vassiliou and Makris [13] for vertically restrained rigid

blocks. Again, this equation of motion can be linearized if slender walls are considered (α ≤ 20◦), such that:

θ̈ = −p2
w

(
α sgn(θ)

(
1 +

P0

W

)
+ θ

(
EAα2

W
− 1

)
+mratio

üg
g

)
(24)

Figure 8 compares the seismic demands (peak rotation and angular acceleration) for slender walls with

different levels of elastic and initial post-tensioning force, subjected to symmetric Ricker pulses of acceleration

amplitude ag = 2 g tanα/mratio. The analyses presented in Figure 8 consider dimensionless elastic forces210

that result in post-uplifting stiffnesses varying from negative to positive values, while the maximum post-

tensioning force is limited by the rocking-triggering condition (Equation 21). The response of a free-standing

rocking block is also included in Figure 8 for comparative purposes.

The results depicted in Figure 8 show that the elastic force improves the stability of the wall when

ωg/pw < 2 (small structures), but has very little effect on the maximum rotation and acceleration response215

for larger structures. This behaviour is related to the increase in the post-uplifting stiffness, which allows

the block to withstand rotations greater than α and still return to its vertical position. Nevertheless, higher

rotational accelerations are observed for some small to medium-sized structures (ωg/pw < 4) in comparison

with free-rocking systems. Moreover, the larger the elastic force the higher the relative acceleration at lower

frequency ratios (ωg/pw < 4).220

On the other hand, the level of initial post-tensioning force has a more significant effect on the maxi-

mum rotation response of both, small and large structures. While an improved stability can be observed

for ωp/p < 4, reductions in the maximum rotations for greater frequency ratios (larger walls) are also

obtained. Importantly, the response enhancement becomes more significant the higher the level of initial

post-tensioning. However, these improvements happen at the expense of inducing higher rotational acceler-225

ations over the full range of frequency ratios studied.
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(a) Rotation spectra, P0 = 0. (b) Acceleration spectra, P0 = 0.

(c) Rotation spectra, EAW = 3
2

1
tan2 α

. (d) Acceleration spectra, EAW = 3
2

1
tan2 α

.

Figure 8: Effect of the dimensionless elastic force, EA/W , and dimensionless initial post-tensioning force, P0/W , on the rotation
and angular acceleration demands for slender walls subjected to Ricker pulses of acceleration amplitude ag = 2 g tanα/mratio.

The results presented in Section 2.1 show that regardless of the acceleration amplitude of a ground

motion, the intensity dimensionless parameter, agmratio/g tanα, can be significantly amplified by the ratio

between the seismic and gravitational masses. Consequently, high effective acceleration amplitudes that are

usually not relevant for the study of classic free-standing blocks, need to be considered when dealing with230

post-tensioned rocking building structures.

Figure 9 compares the peak seismic demands (rotation and angular acceleration) for different post-

tensioned rocking structures subjected to acceleration pulses of amplitude ag = 20 g tanα/mratio. The
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(a) Rotation spectra, P0 = 0. (b) Acceleration spectra, P0 = 0.

(c) Rotation spectra, EAW = 3
2

1
tan2 α

. (d) Acceleration spectra, EAW = 3
2

1
tan2 α

.

Figure 9: Effect of the dimensionless elastic force, EA/W , and dimensionless initial post-tensioning force, P0/W , on the
peak rotation and angular acceleration demands for slender walls subjected to Ricker pulses of acceleration amplitude ag =
20 g tanα/mratio.

results of the analyses suggest that the use of post-tensioned tendons becomes less advantageous when

pulses of higher acceleration amplitude are considered. Although the elastic force slightly reduces the235

overturning cases, the initial post-tensioning force can increase the rotation and acceleration demands in

some cases. This behaviour is studied in more detail in Figure 10, where the maximum response of a block

with ωp/pw = 4 to symmetric Ricker pulses of different acceleration amplitude is plotted as a function of

the dimensionless initial post-tensioning force.
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(a) ag = 2 g tanα/mratio. (b) ag = 20 g tanα/mratio.

Figure 10: Effect of the dimensionless initial post-tensioning force, P0/W , on the rotation and angular acceleration demands
of a slender wall subjected to a symmetric Ricker pulse of frequency ratio ωp/pw = 4.

It can be observed from Figure 10a that for low ground acceleration amplitudes, larger initial post-240

tensioning forces are related to proportionally lower maximum rotations with the potential to suppress the

rocking response altogether (Equation 21). As previously observed in Figure 8, this reduction is accompanied

by an important increase in the maximum peak accelerations. For the post-tensioned wall considered in the

analysis (α ≤ 20◦, ωp/pw = 4 ) and with reference to the response of a free-standing block, a reduction of

50% in the maximum rotation would be associated with a 25% increase in the peak angular acceleration.245

This acceleration magnification becomes even more significant for higher levels of initial post-tensioning

force.

On the other hand, when ground motions of higher acceleration amplitudes are considered (Figure 10b),

a spectral region where the rotation and acceleration are simultaneously amplified can be identified. For

small values of dimensionless initial post-tensioning force (P0/W < 6), rotation demands are significantly250

amplified, reaching a peak of more than twice the maximum rotation of the benchmark free-standing block

at around P0/W ≈ 4. A similar trend is observed for rotational acceleration demands, although with

a smaller amplification ratio. This observation is particulary relevant, as it happens at levels of initial

post-tensioning force ratios that are most commonly observed in practice. For higher magnitudes of ini-

tial post-tensioning forces, the behaviour of the seismic demands resembles the trends observed in Figure255

10a for smaller ground acceleration amplitudes, with maximum rotations reducing progressively and peak

accelerations being amplified.

4. Seismic control of post-tensioned walls with inerters

Although post-tensioned systems have been shown to be effective in controlling structural damage, high

rotations and accelerations associated with the rocking motion can cause significant non-structural and con-260
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tents damage. Previous analyses conducted on free-rocking bodies[34] showed that the use of supplemental

rotational inertia can help to significantly reduce their seismic demands. This control strategy can also be

applied to post-tensioned walled buildings by connecting the inerter directly to the rocking elements or rigid

diaphragm of the structure, as shown in Figure 11. For low-rise buildings, the wall element can be assumed

to behave as a rigid block, and the dynamic behaviour of the system can be studied simply incorporating265

the contribution of the inerter to the models examined in previous sections. Herein, an inerter connected to

the top of the wall (Point C) is considered for simplicity.

Figure 11: Single-degree-of-freedom system representing a post-tensioned rocking wall connected to a grounded inerter of
apparent mass mr. The system can be studied combining the effects of the seismic mass and gravitational loads, the post-
tensioned tendon and the inerter device.

Rocking motion initiates when the overturning moment due to the ground excitation exceeds the restoring

moment exerted by the self-weight and the vertical tendon (Equation 21). Until this instant, the resisting

force in the inerter is zero, since there is no relative acceleration between its terminals. Once the block uplifts,270

point C in Figure 11 follows a circular path. Neglecting the contribution of the centripetal acceleration, the

resisting force in the inerter is:

Fr = mr R θ̈ cos(αsgn(θ)− θ) (25)

where mr is the inertance or apparent mass of the inerter. Evaluating the rotational equilibrium around

the rocking pivot point gives:

(
msisR

2 +mrR
2 cos2(α sgn(θ)− θ)

)
θ̈ + WR sin(α sgn(θ)− θ) + sgn(θ)FptR sinα cos

θ

2

= −msis ügR cos(α sgn(θ)− θ) (26)
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Combining Equation 10 and Equation 26, and rearranging:

θ̈ = −p2
w,σ

(
sin(α sgn(θ)−θ)+mratio

üg
g

cos(αsgn(θ)−θ)+sinα

(
EA

W
tanα sin θ+sgn(θ)

P0

W

√
1 + cos θ

2

))
(27)

with

pw,σ =

√
g

mratioR
(
1 + σ cos2(α sgn(θ)− θ)

) (28)

where σ is the aparent mass ratio defined as: σ = mr/msis. Equation 27 and Equation 28 are anal-275

ogous to the equation of motion obtained by Thiers-Moggia and Malaga-Chuquitaype[34] for free-rocking

bodies equipped with inerters. These expressions show that the inclusion of the inerter effectively reduces

the frequency parameter, pw, of the post-tensioned rocking element. This reduction generally results in

enhanced stability and lower seismic demands due to the well-known size effect of the rocking behaviour[1].

Importantly, the frequency parameter of a rocking wall depends only on the size, R, and the mass ratio of280

the structure (Equation 4). Consequently, it cannot be modified without altering the elevation (R) or the

plan distribution of the building (mratio). This highlights the significance of inerter-based control strategies

as they open the door for an expedient modification of the dynamic response of a rocking system without

altering its geometry.

As mentioned previously, in most practical cases the wall elements can be considered to be slender285

(α < 20◦), and Equation 27 can be linearized such that:

θ̈ = −p2
w,σ

(
α sgn(θ)

(
1 +

P0

W

)
+ θ

(
EAα2

W
− 1

)
+mratio

üg
g

)
(29)

with

pw,σ =

√
g

mratioR (1 + σ)
(30)

4.1. Structural demands under single pulse excitations

In order to thoroughly assess the effectiveness of the proposed system, the response of a wide range of

post-tensioned rocking structures subjected to symmetric Ricker pulses was examined. Walls of positive290

post-uplift stiffness (EA/W = 3/2 tan2 α) and initial post-tensioning force equal to P0/W = 5 are selected

as representative of typical design configurations. Additionally, two apparent mass ratios, σ = 0.5 and

σ = 1, are considered for the structures equipped with inerters. It is important to note that, although

the apparent mass ratios are relatively high, the actual gravitational masses can be kept several orders of

magnitude lower by using amplifying mechanisms such as ball-screws[42] or geared wheels[21]. The results295

presented below correspond to acceleration pulses with amplitude ag = 9 g tanα/mratio, representing to 1.5

times the amplitude required to trigger the rocking motion (Equation 21).

Figure 12 presents the results of the analyses in terms of rotation and acceleration spectra. As noted

above, the introduction of post-tensioning reduces the maximum rotation of the walls, although in this case
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(a) Rotation spectra. (b) Acceleration spectra.

Figure 12: Peak rotation and acceleration demands in post-tensioned rocking structures of positive post-uplift stiffness
(EA/W = 3/2 tan2 α) and initial force P0/W = 5, with and without inerters, subjected to symmetric Ricker pulses of
acceleration amplitude ag = 9 g tanα/mratio.

it has a negligible effect on the acceleration demands. The inerter on the other hand, further reduces the300

peak rotations while at the same time it significantly diminishes the angular accelerations. Moreover, while

the reduction in rotations becomes less significant for higher frequency ratios, the decrease in accelerations

is almost constant along all frequency ratios, reaching reductions of around 50% for σ = 1.

Another parameter of great interest for the seismic design of post-tensioned buildings is the base shear,305

Vb. Considering that the slender wall element behaves approximately as a rigid block, this can be obtained

as:

Vb(θ) =
Mr(θ)

R
(31)

where Mr is the restoring moment exerted by the weight, W , and the post-tensioned tendon. Figure

13a shows the base shear corresponding to the same structures analysed above. As expected, for the

case of negative stiffness (free-standing wall), the maximum shear force is constant and determined by the310

uplifting condition. The introduction of the initial post-tensioning force significantly increases this lower

limit (Equation 21), amplifying also the base shear of the post-tensioned structures. Since the positive

stiffness of the rocking walls is relatively low, the reduction in rotations brought about by the inerter does

not translate in a significant reduction of the restoring moment, and therefore the base shear is mainly

controlled by the uplift resistance.315

This contrasts with previous studies conducted on fixed-base frames that found significant forces can

develop in the inerter [29], which can limit the practical implementation of the system unless clutching is

ensured[30]. Figure 13b shows the resisting force developed in the inerter for the protected structures under
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(a) Normalized base shear. (b) Normalized force in the inerter.

Figure 13: Base shear and inerter force in post-tensioned rocking structures of positive post-uplift stiffness (EA/W = 3/2 tan2 α)
and initial force P0/W = 5, with and without inerters, subjected to symmetric Ricker pulses of acceleration amplitude ag =
9 g tanα/mratio.

consideration. Forces of around 58% and 85% of the weight supported by the wall, W , were registered for

σ = 0.5 and σ = 1 respectively. Although this values can seem high, they are lower than the vertical post-320

tensioning load considered in the analyses, and therefore should be accommodated by adequate detailing.

4.2. Seismic demands under real pulse-like ground motions

In the previous section, the dynamic behaviour of post-tensioned rocking structures equipped with inerter

devices was studied using single Ricker pulse excitations. In real seismic events, structures are subjected

to an acceleration history that can be represented as a series of individual pulses with different frequencies.325

The early work of Housner [1] already identified that the action of these successive pulses can increase the

structural demands and overturn free-standing blocks for smaller acceleration amplitudes than a single pulse

excitation. In this section, the effectiveness of the inerter for the control of the seismic response of rocking

structures is assessed. To this end, a set of 202 pulse-like ground motion records obtained from the Pacific

Earthquake Engineering Research Center (PEER) database is employed. Records from 21 earthquakes with330

magnitudes Mw ranging from 5.4 to 7.9 are considered. Table 1 summarizes the catalogue of earthquakes

used for the analyses [34]. Our study does not consider uncertainties related to the structural properties,

since it is typically the case that the uncertainties associated with the ground-motion are more significant

on the structural response [43, 44].

A 3-storey rigid-wall system (R = 9[m] and α = 10◦) with positive post-uplift stiffness (EA/W =335

3/2 tan2 α), mratio = 5 and P0/W = 5 was selected as a realistic case study, while an inerter of apparent

mass ratio σ = 1 was considered. Figure 14 compares the rotation and acceleration response histories of the

buildings subjected to the 90◦ component of the 1986 San Salvador earthquake. Three cases are assessed
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Table 1: Ground motion database used in the analyses

Earthquake name Year Magnitude Mw Mechanism Number of Records

San Fernando 1971 6.61 Reverse 1
Tabas Iran 1978 7.35 Reverse 1

Coyote Lake 1979 5.74 Strike Slip 4
Imperial Valley-06 1979 6.53 Strike Slip 12

Irpinia Italy-01 1980 6.9 Normal 2
Westmorland 1981 5.9 Strike Slip 1
Morgan Hill 1984 6.19 Strike Slip 2

Kalamata Greece-02 1986 5.4 Normal 1
San Salvador 1986 5.8 Strike Slip 2

Superstition Hills-02 1987 6.54 Strike Slip 2
Loma Prieta 1989 6.93 Reverse Oblique 6

Cape Mendocino 1992 7.01 Reverse 1
Landers 1992 7.28 Strike Slip 3

Northridge-01 1994 6.69 Reverse 14
Kobe 1995 6.9 Strike Slip 4

Kocaeli 1999 7.51 Strike Slip 4
Chi-Chi Taiwan 1999 7.62 Reverse Oblique 36

Chi-Chi Taiwan-04 1999 6.2 Strike Slip 1
Chi-Chi Taiwan-06 1999 6.3 Reverse 2

Duzce Turkey 1999 7.14 Strike Slip 1
Denali Alaska 2002 7.9 Strike Slip 1

Total 202

in this figure: i) a free-rocking building, ii) a building with a post-tensioned wall and iii) the same post-

tensioned building equipped with an inerter of apparent mass σ = 1. The rotation is presented in radians340

whereas accelerations are presented as the linear acceleration at Point C (Figure 11), obtained as the product

of the angular acceleration, θ̈, and the size parameter of the wall, R- in g.

The results plotted in Figure 14 are consistent with the observations made in previous sections for single

pulse excitations. The addition of the post-tensioned tendons reduced the maximum rotation of the wall but

increased the peak acceleration. Nevertheless, the introduction of the inerter efficiently offsets this effect,345

further diminishing the rotation response and significantly reducing accelerations to levels even lower than

those of the benchmark free-standing structure.

A cloud analysis considering the earthquake database described in Table 1 was conducted in order to

compare the seismic performance of the post-tensioned structures with and without inerters. The uniform350

duration, tuni, which corresponds to the sum of the time intervals during which the ground acceleration

exceeds the limit to cause uplifting (Equation 21), was selected as the intensity measure, as recommended

by Dimitrakopoulos et al[45].

A common assumption in seismic demand models is to consider that the median estimated demand Dm

and the intensity measure IM follow a power law [45, 46]355

Dm = a IM b (32)
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Figure 14: Rotation and acceleration response of a post-tensioned rocking structure of R = 9[m], α = 10◦, mratio = 5, positive
post-uplift stiffness (EA/W = 3/2 tan2 α) and P0/W = 5, with and without inerters, subjected to the 90◦ component of the
1986 San Salvador earthquake.

When plotted on a ln(Dm)− ln(IM) plane, Equation 32 becomes a straight line

ln(Dm) = ln(a) + b ln(IM) (33)

where a and b are regression coefficients. Figure 15 presents the results of the cloud analysis and the

corresponding fitted seismic demand models for the protected and unprotected structures. The results of the

regression analyses show a strong correlation between the selected intensity measure, tuni, and the seismic

demands, validating the estimation model proposed in Equation 32.360

In general, the structure equipped with inerter devices shows significantly smaller seismic demands for

the whole range of IMs considered. Mean reductions of around 50% are observed in both peak rotations and

peak accelerations (note the logarithmic scale). These conclusions are consistent with observations made in

Figure 14 and the results obtained in Section 4.1 for single pulse excitations.

As discussed previously, post-tensioned systems have proved to be highly effective in controlling structural365
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(a) Peak rotations. (b) Peak accelerations.

Figure 15: Peak rotation and acceleration demands of post-tensioned rocking structures of R = 9[m], α = 10◦, mratio = 5,
positive post-uplift stiffness (EA/W = 3/2 tan2 α) and P0/W = 5, with and without inerters, subjected to the earthquake
database shown in Table 1.

damage. Nevertheless, economic losses during seismic events are usually controlled by damage to non-

structural components, which is often triggered at response intensities that are smaller than those required

to produce structural damage[47]. Performance-based assessment of non-structural building components

requires the identification of drift and acceleration sensitive elements and the definition of their corresponding

limits[12]. Design codes typically specify these limits as a function of the non-structural component typology.370

With the aim of comparing the overall performance of post-tensioned walled structures with and without

ineters, the limit defined in Eurocode 8 [48] for buildings having ductile non-structural components, θ ≤
0.75%, is adopted in this study. Figure 16a shows the fragility functions associated to this limit state

obtained for the protected and unprotected structures considered in the previous analyses. The cloud-to-

IDA procedure proposed by Miano et al.[49] was used to minimize the number of analyses and amount of375

scaling.

On the other hand, the design of acceleration-sensitive non-structural components traditionally entails

the computation of floor response spectra[50]. Nonetheless, the peak floor acceleration can be used as a first

proxy in order to assess the performance of the proposed seismic control strategy. Figure 16b presents the

fragility functions associated to an acceleration limit of R θ̈ = 0.5[g].380

The fragility functions depicted in Figure 16 demonstrate the significant improvement in the performance

of post-tensioned rocking structures brought about by the inerter. In terms of rotations, the estimated

median IM associated with the selected drift limit state is t̃uni = 0.5[s] for the unprotected structure,

whereas this parameter increases to t̃uni = 0.74[s] when the inerter is introduced. Moreover, the response

enhancement becomes more important for higher probabilities of exceedance. Similar trends are observed in385

the case of peak floor accelerations, with an even greater increase (nearly four-fold) in the median IM. On

the other hand, smaller variations were obtained on the logarithmic standard deviation, βlnX . The results

presented in Figure 16 are in line with the demand reductions observed in the previous sections and allow
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(a) Rotation limit: θmax = 0.75%. (b) Acceleration limit: R θ̈max = 0.5[g].

Figure 16: Fragility functions for post-tensioned rocking structures of R = 9[m], α = 10◦, mratio = 5, positive post-uplift
stiffness (EA/W = 3/2 tan2 α) and P0/W = 5, with and without inerters.

us to conclude that the use of of supplemental rotational inertia devices configures a practical alternative to

improve the dynamic response and boost the overall seismic performance of rocking building structures.390

5. Conclusions

In this paper we have examined the basic dynamic behaviour of post-tensioned rocking structures and

assessed the feasibility of using supplemental rotational inertia to reduce their structural demands and

improve their overall seismic performance. Firstly, a modified rigid block representative of rocking building

structures was defined. Importantly, our model considers the possibility of having different seismic and395

gravitational masses through the introduction of an mratio parameter. Based on a formal dimensional-

orientational assessment of the system, we have demonstrated that this mass ratio can be incorporated into

the existing Π-parameters without introducing a new dimensionless group.

In a second stage, a vertical post-tensioned tendon was introduced to the model. After deriving the

equations of motion, we examined the free-vibration response of the system. Additionally, the structural400

demands under Ricker pulse excitations were studied in terms of maximum rotations and peak angular

accelerations. The results of these analyses showed that the elastic force can help to improve the stability

of smaller rigid blocks, but has little effect on larger structures. This behaviour is related to the increase in

the post-uplift stiffness which allows the block to survive rotations greater than its slenderness, α, and still

return to the vertical position. On the other hand, the initial post-tensioning force had a more significant405

effect on the maximum rotations of both, smaller and larger structures. Moreover, the improvement in the

response becomes more important the higher the level of initial force. Nevertheless, these rotation reductions

are accompanied by a significant increase on the peak angular accelerations at low frequency ratios for un-

stressed rocking structures and over the full spectral range in the case of structures with non-zero levels of

initial post-tensioning.410
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The introduction of the mass ratio parameter, mratio, implies that regardless of the acceleration ampli-

tude of a ground motion, the intensity dimensionless parameter, agmratio/g tanα, can assume significantly

high values. Consequently, the consideration of high effective acceleration amplitudes, which are usually

not relevant for classic free-standing blocks, becomes important when studying post-tensioned rocking sys-

tems. The results obtained suggest that the use of post-tensioned tendons becomes less advantageous when415

pulses of higher acceleration amplitude are considered, as the initial post-tensioning force can significantly

amplify rotation and acceleration demands for initial force ratios that are common in practical applications

(P0/W ≤ 6).

Finally, we assessed the alternative of using supplemental rotational inertia for the seismic control of post-

tensioned rocking buildings. The proposed strategy employs inerters, a mechanical device that develops a420

resisting force proportional to the relative acceleration between its terminals. Our derivation of the equation

of motion of the system shows that the inclusion of the inerter effectively reduces the frequency parameter

of the wall resulting in lower seismic demands due to the well-known size effect of rocking behaviour. This

result is then reasserted by the rocking spectra obtained for structures with typical post-uplift stiffness

and initial post-tensioning force values subjected to Ricker acceleration pulses. Our analyses show that425

the introduction of the inerter further lowers the rotation response, while at the same time it significantly

reduces the building accelerations levels. Nevertheless, this response enhancement does not translate into

a significant reduction of the lateral forces, as the positive stiffness of the rocking walls is relatively low

and the base shear is mainly controlled by the uplift resistance. Lastly, we conducted a probabilistic

assessment of the seismic performance of protected and unprotected structures using a set of 202 real pulse-430

like acceleration records. The results of this assessment confirmed the behavioural trends observed under

single pulse excitations, allowing us to conclude that the use of supplemental rotational inertia devices

configures a practical alternative for modifying the dynamic response and reducing seismic demands in

post-tensioned rocking building structures. However, further research is undergoing to analyse the efficiency

of the system in taller structures, where the flexibility of the wall panels may not be neglected.435
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