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Abstract
Rocking bodies can be found at all structural scales, from small museum exhibits to uplift-
ing buildings. These structures, whose dynamic stability springs from the difficulty of 
mobilizing their rotational inertia, are ideal candidates for benefiting from the supplemental 
inertia provided by inerters. This benefit can be limited, however, if the inerter drives the 
structural response towards potentially undesirable motions by transferring back the kinetic 
energy accumulated within it at inconvenient times. To control this phenomenon, a clutch-
ing system can be employed to direct the interaction between the interter and the struc-
ture improving further its dynamic behaviour. To date, however, most of the studies deal-
ing with clutching inerto-elastic or inerto-rocking systems under seismic excitation have 
adopted a rather simplistic idealisation of the clutch engagement-disengagement response. 
In this paper, we re-visit the impact effects on inerto-rocking structures and propose an 
improved mechanistic model of the clutching system. First, the effects of the inerter on 
the transition upon impact and the impact effects on the acceleration response of rocking 
blocks are analysed. Then, a set of original analytical expressions for rigid and flexible 
rocking structures equipped with a pair of clutched inerters are derived. The newly pro-
posed models are used to examine the evolution of the energy dissipation in the device and 
the influence of key parameters like the clutch stiffness, gears play, viscous damping and 
dry friction on its response. We conclude by evaluating the behaviour of the detailed rock-
ing model with clutched inerters to a set of realistic earthquake ground motions. Although 
important differences are observed in the evolution of energy dissipation and engagement 
response depending on the type and characteristics of the clutch model, largely comparable 
peak values of displacement are obtained. On the other hand, a more accurate representa-
tion of the clutch behaviour leads to potentially larger acceleration demands. Our analyses 
also show that, in general, the inclusion of the inerter results in higher coefficients of res-
titution, indicating lower energy dissipation during impact and that the infinite accelera-
tion spikes predicted by Housner’s model can be ignored if impact forces are sufficiently 
distributed over time as to cause continuous velocity transitions, but sharp enough not to 
appreciably affect the rotation response.
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1 Introduction

Static redundancy, ductility and positive stiffness are among the most advantageous 
structural characteristics according to modern earthquake engineering. Yet, articulated 
structures with negative stiffness that are allowed to uplift have shown remarkable seis-
mic performance in the past (Housner 1963; Makris 2014) and have motivated the crea-
tion of a new family of earthquake resilient post-tensioned systems (see for example 
Granello et al. 2020 and Kibriya et al. 2020). This unconventional response, which can 
be generally described as rocking, is representative of the dynamic behaviour of a wide 
range of structures, from small museum exhibits to articulated modern buildings and 
bridges (Calio and Marletta 2003; Giouvanidis and Dimitrakopoulos 2017; Makris and 
Vassiliou 2012, 2015).

While the dynamics of rocking bodies are complex, the simple theory initially out-
lined by Kirkpatrick (1927) and further developed by Housner (1963) has been shown 
able to reproduce well the main statistics of the seismic response of rocking structures 
(Bachmann et al. 2018). In this theory, the uplift condition is attained if the overturning 
moment exceeds the restoring moment, which in free rocking structures is mainly due to 
self-weight, hence when:

where üg is the acceleration of the ground, g is the acceleration of gravity and � is the slen-
derness of the rocking body as presented in Fig. 1.

(1)üg ≥ g tan 𝛼

Fig. 1  Rocking block under horizontal ground motion
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By assuming that no sliding or bouncing occurs during impact and establishing 
dynamic moment equilibrium, Housner (1963) derived the following expression for the 
planar rocking motion of such a body:

with an energy reduction factor, that relates the pre- and post-impact angular velocities, 
equal to:

where p is a frequency parameter that characterizes the dynamic response of the block dan-
gling from its pivot point, which, for a rectangular block is:

with R being the size of the rocking body (Fig. 1).
Although Housner’s classic  rigid rocking body idealization is reasonable in a vari-

ety of cases, (e.g. stone-based historical structures, stocky building content and equip-
ment), there is another family of structures (slender buildings, wind turbine support 
towers, etc.) that exhibit important structural flexibility on top of their rocking response. 
The effects of this elastic flexibility on the rocking response was first investigated by 
Chopra and Yim (1985) who examined the response of a flexible single-degree-of-
freedom (SDOF) system on an uplifting rigid base. They derived equations to describe 
the motion of flexible rocking structures and demonstrated that foundation uplift can 
reduce shears and moments at the base. Their model was later extended to deal with 
large deformations (Oliveto et al. 2003) and large rotations (Acikgoz and DeJong 2012). 
These analyses demonstrated that flexible structures are generally more stable than rigid 
ones but can be prone to significant deformations.

The proneness of rocking structures to large deformations and rotations together with 
the increased accelerations caused by impact and uplifted resonance have motivated 
researchers to look for suitable seismic vibration control strategies. While some have 
attempted to reduce the seismic vulnerability of rocking structures by preventing uplift 
(Makris and Zhang 2001), others have proposed a range of passive and semi-active con-
trol strategies (Ceravolo et  al. 2016; Dimitrakopoulos and DeJong 2012; deLeo et  al. 
2016; Vassiliou and Makris 2012; Pan and Málaga-Chuquitaype 2020)

A promising seismic control strategy, recently investigated by Thiers-Moggia and 
Málaga-Chuquitaype (2019, 2020a), consists in the use of inerters. These devices, ini-
tially studied in Japan by Arakaki et al. (1999) and popularized in the West by Smith 
(2002), are two-node mechanical devices that develop resisting forces proportional to 
the relative acceleration between their terminals. Since the dynamic stability of rocking 
systems springs directly from the difficulty of mobilizing their rotational inertia (see 
Eq. 2), supplemental inertia devices like inerters constitute a perfect fit for the seismic 
response control of rocking structures. This was demonstrated by Thiers-Moggia and 
Málaga-Chuquitaype (2019) who showed that the addition of inerters to rocking bodies 
has an effect equivalent to reducing the frequency parameter of the block, effectively 
replacing p, in Eq. 2, by:

(2)�̈� + p2 sin (𝛼 − 𝜃) =

[
−p2

üg

g
cos(𝛼 − 𝜃)

]

(3)r =
(
1 −

3

2
sin2 �

)2

(4)p =

√
3g

4R
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where � is the apparent mass ratio or the ratio between the inerter apparent mass ( mr ) and 
the rocking block mass (m). Therefore, the frequency parameter of an inerter-equipped 
structure (Eq. 5) is lower than that of a bare rocking block (Eq. 2). This reduction of the 
frequency parameter results in lower demands due to the size effect of rocking behaviour 
(Housner 1963) that dictates that among two blocks of the same slenderness the one with 
the lower frequency parameter is more stable.

An added advantage of inerters, is that they can be coupled with ball-screw or gear sys-
tems, hence allowing the dissociation between their gravitational mass (the actual mass of 
the device) and their inertial mass (the apparent mass of the inerter). Inertial forces several 
orders of magnitudes larger than those corresponding to their gravitational mass have been 
generated by means of such amplifying mechanisms (Smith 2002; Ikago et al. 2012).

While studying the response of fixed-base elastic systems with inerters, Makris and 
Kampas (2016) recognised that inerters store energy that can be transferred back to the 
structure when it is not convenient, and proposed the use of twin inerters equipped with 
clutches to ensure the inerter only opposes the structural motion without inducing it. With 
this purpose, they hypothesized an energy dissipation mechanism that would be able to 
fully decelerate the inerter during its disengaged state allowing it to be ready for an ulterior 
re-engagement whenever needed. Accordingly, they assumed an acceleration-based clutch 
with a sequential engagement law described by:

where Fi is the force transferred from the inerter to the structure and u is the local transla-
tional degree of freedom. Although this sequential model has been widely used in studies 
with clutched inerters (Thiers-Moggia and Málaga-Chuquitaype 2019, 2020b; Wang and 
Sun 2018; Liang et  al. 2021), it suffers from several drawbacks. First, the engagement/
disengagement response is instantaneous, it depends on the direction of motion only and 
is therefore far from real systems where a more incremental state change depending on the 
stiffness of the clutch and the relative displacement increments is expected (Solfrank and 
Kelm 1999; Zhu and Parker 2003). Second, the mechanism by which the kinetic energy 
is dissipated in the inerter during its idle motion state is not explicitly modeled and does 
not reflect a mechanically feasible energy transfer. Moreover, as it stands, the sequential 
law of Eq. 6 does not allow for the examination of the clutch motion or the effects of its 
mechanical characteristics on the response of the structural system (Málaga-Chuquitaype 
et al. 2019).

In this paper, we adopt a more mechanistic idealization of the clutching system and use it 
to examine the influence of clutch stiffness, gears play, viscous damping and dry friction on 
the overall inerto-rocking system. The paper starts with an original account of the changes 
required in Housner’s restitution coefficient in order to incorporate the effects of the inerter 
during impact. These changes are more important for stockier rocking structures and larger 
inerter apparent masses. Subsequently, we evaluate the effects of impact on the accelera-
tion demands and demonstrate that Housner’s model can be used to assess the acceleration 

(5)p� =

√
3g

R
(
4 + 3� cos2(�sign(�) − �)

)

(6)Fi(t) =

⎧
⎪⎨⎪⎩

mrü ,
�
ü

u̇

�
> 0

0 ,
�
ü

u̇

�
< 0
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response of rocking blocks under the assumption that impact forces are sufficiently distrib-
uted over time. The mechanistic model used to incorporate the clutch’s discontinuous stiff-
ness non-linearity into the response of inerto-rocking systems is presented next. A hyperbolic 
tangent function is adopted and a set of analytical expressions are derived for rigid and flexible 
rocking structures equipped with a pair of clutched inerters. The newly proposed models are 
used to examine the evolution of the energy dissipation in the device and the influence of key 
parameters like the clutch stiffness, gears play, viscous damping and dry friction. Finally, the 
response of rocking structures with inerters is evaluated under a suite of real accelerograms.

2  Transition upon impact

Housner’s restitution coefficient needs to be modified in order to account for the effect of the 
inerter during impact. Figure 2 depicts the rigid rocking block studied in the previous section 
at the instant of impact. This figure shows a horizontal inerter supported by a stiff chevron 
frame and connected to the centre of mass of a rocking structure (Thiers-Moggia and Mál-
aga-Chuquitaype 2019). Similar configurations have been used to study the response of rigid 
and flexible rocking structures including museum artifacts as well as bridge piers and building 
walled structures (Thiers-Moggia and Málaga-Chuquitaype 2020b, 2021a).

Just before impact, the momentum of a mass element dm located at a distance l =
√
x2 + y2 

from the pivot point O is:

and the momentum of the inerter’s apparent mass:

where �̇�1 is the angular velocity before impact. The corresponding moment of momentum 
about the opposite corner, O′ , can be obtained as:

(7)dJm = l �̇�1dm

(8)Jmr
= mr �̇�1R cos 𝛼

Fig. 2  Rigid rocking block connected to an inerter at the instant of impact
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and

where � is the constant density of the block, and � = l − 2Bx∕l is the lever arm of the ele-
ment momentum vector dJ about point O′ . The total moment of momentum of the rocking 
structure about point O′ is then given by:

where A is the total area of the block. Integration yields:

On the other hand, the moment of momentum about point O′ after impact is:

Then, conservation of moment of momentum before and after impact gives:

On the other hand, the ratio of kinetic energy before and after impact is:

Combination of Eqs. 14 and 15 yields:

Equation 16 defines the coefficient of restitution of a rigid rocking block connected to an 
inerter of apparent mass ratio � . When � = 0 (no inerter case), this expression becomes 

(9)d𝛬m = dJ𝛿 = 𝜌 l �̇�1𝛿 dxdy

(10)𝛬mr
= Jmr

R cos 𝛼 = mrR
2 �̇�1 cos

2 𝛼

(11)𝛬1 = 𝜌 �̇�1

(
∫A

(x2 + y2)dxdy − 2B∫A

xdxdy

)
+ mr �̇�1R

2 cos2 𝛼

(12)𝛬1 = I0�̇�1 − 2m�̇�1R
2 sin2 𝛼 + mr �̇�1R

2 cos2 𝛼

(13)𝛬2 = I0�̇�2 + mrR
2 �̇�2 cos

2 𝛼

(14)I0�̇�1 − 2M�̇�1R
2 sin2 𝛼 + mrR

2 �̇�1 cos
2 𝛼 = I0�̇�2 + mrR

2 �̇�2 cos
2 𝛼

(15)r𝜎 =
�̇�2
2

�̇�2
1

< 1

(16)r� =

(1 −
3

2
sin2 � +

3

4
� cos2 �

1 +
3

4
� cos2 �

)2

Fig. 3  Effect of the inerter on the 
restitution coefficient
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identical to the one obtained by Housner (Eq. 3). Figure 3 shows the effect of increasing 
levels of inertance on the coefficient of restitution of blocks of different slenderness. The 
plot shows that as the apparent mass of the inerter increases, the coefficient r� becomes 
larger, indicating a lower amount of energy dissipation during impact. Importantly, this 
effect is much more significant for stocky structures.

3  Impact and the acceleration response

The formulation presented in the previous section considered a classical impact framework, 
where vertical forces are assumed to be instantaneous and concentrated at the pivot corners. 
Although this model provides a good estimation of the amount of energy dissipated during 
impact (Bachmann et al. 2018), Eq. 15 predicts an instantaneous change of velocity and, there-
fore, an unrealistic infinite acceleration at the transition instant. A more detailed assessment of 
the acceleration response can be performed if Dirac-Delta functions are considered in order 
to distribute the impact forces over time, as suggested by Prieto et  al. (2004) and Acikgoz 
and DeJong (2016). In this formulation, a vertical force is considered to act on the impending 
pivot point as the structure approaches � = 0 , applying a moment that counteracts the rocking 
motion and decelerates the rotating structure. After the phase transition at � = 0 , the force is 
terminated as any forcing from the pivot point will no longer influence the moment equilib-
rium. This process is schematically illustrated in Fig. 4a.

The impact force, Fi , is approximated by a Gaussian function of the rocking angle, defined 
by a zero mean and a standard deviation of n∕

√
2 , where n represents a width parameter that 

influences the sharpness of the impact force. The effect of changing the value of n on the form 
of the function is illustrated in Fig. 4b. Regardless of the value of n, the energy dissipated dur-
ing a single impact cycle is given by:

(17)Eloss = 2B ∫
0

−∞

1

n
√
�
e−�

2∕n2d� = B

(a) Variation of impact force with θ. (b) Effect of n on the shape of the impact force.

Fig. 4  Impact forces in the Dirac-Delta model
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Using this property, the Gaussian function can then be scaled to obtain any desired energy 
loss, Eini(1 − r):

In order to ensure that the specified amount of energy is dissipated during impact, the 
force-activation rotation is defined as �i = 2.576(n∕

√
2) , corresponding to the 99.5% confi-

dence interval of the Gaussian function (Acikgoz and DeJong 2016). On the other hand, n 
is assumed to be an independent parameter of the system.

Figure 5 compares the response of the same rigid block analysed in the previous sec-
tion, considering a classical impact framework (Housner) and the Dirac-Delta model for 
different values of n. The magnitude of the impact forces is defined based on Housner’s 
coefficient of restitution, r, according to Eq. 18. Accordingly, the three models compared in 
Fig. 5 have equivalent energy dissipation ratios during impact.

Figure  4b showed that impact forces become sharper as n decreases, tending to 
instantaneous impact as n approaches zero. This is evident in Fig.  5a, where the rota-
tion responses obtained with Housner’s formulation and the Dirac-Delta model converge 
when n = 0.0001 . Moreover, the acceleration spikes predicted by the classical formula-
tion are clearly observed in Fig. 5b. As the impact forces become more distributed over 
time ( n = 0.005 ), these spikes disappear and the acceleration history approaches the in-
between-impacts response obtained with Housner’s model. Likewise, very similar rotation 
amplitudes are obtained with the three models under consideration, even though changes in 
the duration of impact cause shifts in the phase of the response.

The results presented in Fig.  5 demonstrate that as soon as one deviates from the ide-
ally instantaneous impact assumption (or what is the same, as soon as one deviates from the 
assumption that the change in velocities happens in a time interval of precisely 0 s), the infi-
nite accelerations associated with this instantaneous change in velocities are mitigated dramat-
ically. Therefore, in the context of classical dynamics, Housner’s model can be used to assess 
the acceleration response of rocking blocks provided those impact forces are sufficiently 

(18)Fi =
Eini(1 − r)

Bn
√
�

e−�
2∕n2

(a) Base rotation. (b) Angular acceleration.

Fig. 5  Response of a rigid block of � = 10◦ and � = 0 , to a sine pulse ground acceleration of ag∕g� = 1.5 
and �g∕p = 4 for different impact models
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distributed overtime as to cause continuous velocity transitions, but sharp enough not to appre-
ciably affect the rotational response of the block. On this note, Acikgoz and DeJong (2016) 
found that the smaller acceleration magnitudes predicted by the Dirac-Delta model are in bet-
ter agreement with experimental observations. Accordingly, the analyses presented in the fol-
lowing sections consider the classical impact framework developed in Sect. 2, ignoring the 
velocity discontinuity (i.e. infinite acceleration) when assessing peak acceleration demands.

4  Modelling of clutched inerter devices

The simplified sequential clutch engagement model introduced by Makris and Kampas (2016) 
(Eq. 6) is computationally convenient. But, as mentioned above, it also has its shortcomings, 
chief among them is the fact that by treating the clutched inerters as an abstract discontinuous 
inertial entity an examination of the device characteristics and their impact on the seismic 
response of rocking structures is prevented. Its implicit assumption of an instantaneous decel-
eration can also limit its application towards practical design work. Besides, the unspecified 
energy dissipation mechanism contributes towards the reduction of peak displacements, but its 
relative importance cannot be established.

A more rational approach to modelling clutched inerters was adopted by Málaga-Chuqui-
taype et al. (2019). In their model, the rotation of inerters is considered explicitly as an addi-
tional DOF and the interaction between inerter-clutch-structure is modelled via a non-linear 
spring with continuous stepwise stiffness (Zhu and Parker 2003). This improved model 
allowed Málaga-Chuquitaype et  al. (2019) to explore the nonlinear dynamics of fixed-base 
SDOF systems. In this paper, we extend such model to rocking structures, both rigid and flex-
ible, and examine the ensuing nonlinear effects.

Consider the inerto-rocking system depicted in Fig.  2 and assume that the inerter now 
incorporates a one-way clutch within it. This clutch will be able to transmit torque or remain 
disengaged depending on the direction of motion. In such a case, the torque transmitted 
between the inerter’s flywheel and the structure can be represented mathematically as:

where � is a factor that controls the transition between engagement and disengagement. As 
can be appreciated from Fig. 6, a higher value of � avoids the local distortion near negative 

(19)Ti(��i) =
1

2
k�
[
1 + tanh(���i)

]
��i

Fig. 6  Clutch torque, T, transmis-
sion for different stiffness, k� , 
values and an � = 106
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zero. In this paper, unless specified otherwise, � is set to 106 . On the other hand, the clutch 
rotational stiffness k� controls the rigidity of the contact between inerter and structure, 
an aspect that will be discussed later in this paper. Besides, �� stands for the incremen-
tal relative rotation which physically represents the intrusion between inerter and structure 
along the contact surface during engagement. It follows that the interaction between struc-
ture and inerter without clutch can be explicitly modelled by a linear function of the type 
Ti(��i) = k���i.

It should be noted that, since the above defined functions are strictly valid only for static 
contact, some instances of re-engagement may fail to be identified given that they may hap-
pen at any point on the gear and not necessarily at the starting local coordinate ( �i ) being 
monitored. To resolve this, we note that the clutch can re-engage if the velocity of structure 
surpasses that of the inerter again along the global engagement direction. Therefore, the local 
coordinate is updated in real time by resetting its value to the structure’s local coordinate once 
a re-engagement event is detected. An alternative approach is to introduce the number of teeth 
of the ratchet gear as an additional variable so that that inerter rotation can be reset to zero 
after the passing of each tooth. This formulation, however, is only valid for a clutch of the 
ratchet and pawl type and it becomes numerically expensive as the number of teeth in the 
ratchet becomes large. In this paper, the former approach is adopted by means of the event 
functions implemented in Matlab (Higham and Higham 2016) to control the integration pro-
cess and to recognise the occurrence of re-engagement. At which point the system is re-set. If 
this is not done, then the clutch will be prevented from re-engaging after the first engagement 
event.

Finally, it is important to note that a clutch will work only in one direction. Hence, the 
clutched inerter device described above will disengage when the structure tends to reverse 
after a local maximum rotation has been attained. For the inerter system to be effective in both 
directions, a parallel inerter is needed to oppose the motion in the alternative direction, while 
the first inerter rotates idly. This idle inerter rotation also needs to be modelled in order to get 
a more precise description of the engagement-disengagement response of the overall system. 
To this end, we will now turn to the evaluation of rigid blocks equipped with a pair of clutched 
inerters in the next section before extending the discussion to flexible rocking structures.

5  Rigid blocks equipped with clutched inerters

5.1  Equations of motion

The rigid rocking block depicted in Fig. 7 can be used to study the response of inerto-rocking 
systems in a generalizable way. The rigid rocking block is characterized by its size (R), slen-
derness ( � ) and mass (m); while the inerters are defined by their moment of inertia ( Ji ) and 
radii ( �i ). Only symmetric pairs of inerters are considered in this study, hence �a = �b = � and 
Ja = Jb = J . Assuming that the friction is large enough to prevent block sliding, the motion 
of system is described by the block uplift angle ( � ) and the rotation of the inerters ( �a and �b ). 
From the discussion on the preceding section, it follows that the contact between inerters and 
block is described by the following equations:

(20)Ta(��) =
1

2
k�
[
1 + tanh

(
�(x∕� − �a)

)]
(x∕� − �a)
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where x is the horizontal displacement of the centre of the block:

which for Slender blocks can be simplified to:

Lagrange’s principles are used to derive the equations of motion using the generalized 
coordinates � , �a and �b . Accordingly, the kinetic energy of the system including the rota-
tion of inerters about their bearings and that of the block about O or O’ is given by:

On the other hand, the total potential energy including the gravity energy of block and the 
elastic energy stored in the clutch is:

while the Lagrange function is defined as:

Furthermore, we assume that only the inerters are subjected to viscous damping while the 
block can only dissipate energy through impact, therefore the corresponding dissipative 
term defined by the Rayleigh’s function is:

and the non-conservative generalized force term due to ground motion is:

(21)Tb(��) =
1

2
k�
[
1 + tanh

(
�(x∕� − �b)

)]
(x∕� − �b)

(22)x = R(sign(�) ⋅ sin � − sin (sign(�) ⋅ � − �))

(23)x = R�

(24)T =
1

2
J
(
�̇�2
a
+ �̇�2

b

)
+

1

2
I0�̇�

2

(25)V = mgR cos (sign(�) ⋅ � + �) + ∫
��a

0

Tad
(
��a

)
+ ∫

��b

0

Tbd
(
��b

)

(26)L = T − V

(27)D =
1

2
c
(
�̇�2
a
+ �̇�2

b

)

Fig. 7  Rigid rocking block with twin clutched inerters
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Substituting each generalized coordinate into Lagrange’s equation gives:

from where the governing equations of the 3-DOF system are obtained:

where p is the frequency parameter of the rocking block, c̄ is the (inertial) mass-normalized 
damping coefficient defined as c̄ = c∕J , and Ia and Ib are the mass-normalized rotational 
inertia of the flywheel in the inerters. In order to facilitate comparisons with previous stud-
ies, the moment of inertia of the inerters can be replaced by their suppression coefficients: 
�a = �b = � =

J

m�2
 . If is worth noting that for slender blocks (small � ), Eq. 30 can be sim-

plified to:

5.2  Numerical solution and model comparison

The equations of motion derived above were solved by means of numerical integration with 
event screening in Matlab (Higham and Higham 2016). Figure 8 shows the displacement, 
velocity, and acceleration response histories of a slender ( � = 10◦ ) rigid rocking block with 
and without inerters. Included in this figure are the results obtained with the sequential 
model implemented by Thiers-Moggia and Málaga-Chuquitaype (2019) as well as the 
predictions of the newly proposed model described above. The suppression coefficient of 
inerters and clutched inerters is taken as � = 0.5 . Besides, a damping of c̄ = 1 s−1 is used 
for the production of the new clutch model curves. This value of damping was chosen so as 
to obtain comparable responses between alternative models. The structures are subjected to 
a sinusoidal pulse excitation at their base of ag∕g� = 1.5 and �g∕p = 4.

It is clear from Fig. 8a that the inerter ( � = 0.5 ) can greatly stabilize the block dur-
ing the initial stages of the response. However, the response is amplified at later stages, 
relative to the uncontrolled structure ( � = 0 ), which indicates a lower amount of energy 
dissipation during impact and/or energy being transferred back from the inerter to the 
structure. On the other hand, Fig. 8b proves that the inclusion of one-way clutches can 
eliminate this phenomenon and improve the effectiveness of inerters. In addition, it 
can be appreciated from Fig. 8b that the sequential clutch formulation leads to a faster 

(28)Q𝜃 = −müg
𝜕x

𝜕𝜃
= −mügR cos (sign(𝜃) ⋅ 𝛼 − 𝜃)

(29)
d

dt

(
𝜕L

𝜕q̇i

)
−

𝜕L

𝜕qi
+

𝜕D

𝜕qi
= Qi

(30)�̈� = −p2
[
sin(𝛼 − 𝜃) +

(
üg

g
+

RJ(Ia + Ib)

I0𝜌p
2

)
cos(𝛼 − 𝜃)

]

(31)�̈�a + c̄�̇�a − Ia = 0

(32)�̈�b + c̄�̇�b − Ib = 0

(33)�̈� = −p2
[
𝛼 − 𝜃 +

üg

g
+

RJ(Ia + Ib)
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amplitude decrease in comparison with the newly proposed model. This is down to the 
intrinsic differences in the modelling assumptions as can be further explained with ref-
erence to Fig.  9. Figure  9 evidences the effects of the underlying assumption of the 
sequential model related to the complete sudden loss of the energy in inerter after disen-
gagement. This contrasts with the relatively decelerated response of the newly proposed 
model which is controlled by an explicit modelling of the viscous dissipation within 
the device. It is also clear from Fig. 9a that the model proposed in this paper struggles 
to attain a strong re-engagement with the structure after t = 3s . This is because at this 
stage in the response the inerter has limited time to decelerate while the frequency of 
the rocking motion continues to increase rapidly. The sequential model (Fig. 9b), on the 
other hand, re-engages irrespectively of the conditions of relative motion until the rock-
ing block comes to rest.

It should be noted that the apparently solid areas depicted in Fig. 9a for the newly pro-
posed model corresponds to regions of intensive engagement-disengagement activity. This 
is shown in detail in Fig. 10. As explained above, once an engagement event is detected 
(Point A in Fig. 10), the inerter rotation assumes a value compatible with the structure’s 
deformation. This rotation starts to accumulate in successive time steps leading to a sharp 
increase in the interaction forces and a subsequent increment in the inerter acceleration. 
When the velocity of the inerter and the local velocity in the structure coincide (Point B), 
a maximum displacement difference and peak transmission is achieved. Subsequently, the 

(a) Single inerter. (b) Twin clutched-inerters.

Fig. 8  Response of a rigid block of � = 10◦ , with and without inerters subjected to a sine pulse of 
ag∕g� = 1.5 and �n∕p = 4
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(a) Inerter velocity and clutch force (proposed model).

(b) Inerter velocity and clutch force (sequential model).

Fig. 9  Comparison of rotational velocity and transmitted force histories between the newly proposed model 
and the sequential model of the clutch

A
B

C

D

A

B

C D

(a) Inerter velocity. (b) Clutch force (sequential model).

Fig. 10  Detail of the inerter velocity and clutch force during global engagement. Newly proposed model
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inerter starts to catch up with the structure’s deformation and the strength of the interac-
tion starts to decrease accordingly, until detachment (Point C). During disengagement, the 
inerter slows down due to damping until the next contact (Point D). This process, which is 
not modelled in the sequential engagement idealization, is repeated until the global engage-
ment process finishes and has been observed in real systems (Centea et al. 2001).

5.3  Inerter and clutch relative contributions to the response

Although the benefits of clutched inerters over single inerters towards the seismic con-
trol of rocking structures have been widely demonstrated (Thiers-Moggia and Málaga-
Chuquitaype 2019, 2020a, 2020b, 2021b). The question of how much does the clutch itself 
contributes towards these improvements becomes pertinent in light of the abilities of the 
improved clutching model. This question is explored herein with reference to Figs. 11 and 
12 which depict the response of rigid blocks of comparable geometry with and without 
inerters and clutches to a ground acceleration of ag∕g� = 1.5 and �g∕p = 4 . The blocks 
have a slenderness of � = 10◦ . The suppression coefficient of inerters and clutched inerters 
is assumed as � = 0.5.

(a) Energy in the structure. (b) Rotation.

Fig. 11  Response histories of a series of rigid blocks of � = 10◦ with and without inerters subjected to a 
sine pulse of ag∕g� = 1.5 and �g∕p = 4 

(a) Peak rotation. (b) Peak acceleration.

Fig. 12  Response spectra of a series of rigid blocks of � = 10◦ with and without inerters subjected to a sine 
pulse of ag∕g� = 1.5 and �g∕p = 4 
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Figure 11 shows that the newly adopted model and the previously proposed sequential 
model achieve comparable peak displacement responses. This happens despite the sequen-
tial model assumption of an instantaneous energy dissipation at disengagement. By com-
parison, rocking blocks equipped with a single inerter without clutch reach a slightly higher 
peak displacement, and transfer energy back and forth between the inerter and the structure 
leading to marked peaks and throughs in the structure’s energy levels and a suboptimal 
performance. It is worth noting at this point that the sequential model does not necessarily 
represent an upper bound of energy dissipation. This is because the dissipation process in 
the sequential acceleration-based law starts after disengagement and is assumed to finish 
at an unspecified time before the next engagement event and will therefore not affect the 
motion of the structure. In other words, the velocity drop in the inerter is not modelled but 
pre-determined. By contrast, the condition of re-engagement in our new mechanistic model 
accounts for this relative velocity and the processes of energy transfer from structure to 
inerter as well as the dissipation in the inerter happen simultaneously. These actions are 
taken by the structure through contact forces during engagement and thus, the dissipation 
of inerters will actually affect the structural motion and it is possible that the proposed 
model can achieve greater energy dissipation than the sequential idealization even though 
the engagement time is shorter.

Figure  12 presents the displacement and acceleration response spectra of the blocks 
under consideration. In these plots, the condition of overturning is attained when frequency 
ratio is approximately 𝜔g∕p < 3 and the curves are discontinued after that. It is clear from 
12 that when looked in terms of peak response values, both the detailed model presented 
in this paper and the previous sequential idealization produce largely comparable maxi-
mum displacement results. For low frequency ratios, the more faithful representation of 
the of clutch in the new model leads to displacement estimations marginally lower than the 
sequential model. These differences are further reduced as the frequency ratio increases. 
On the other hand, the effects of a more detailed simulation of the clutch engagement pro-
cess leads to higher acceleration levels, due to the juddering effects described above, and 
produce peak values of acceleration markedly larger than the ideally sequential assump-
tion. It appears that the most effective way to control peak responses in rigid rocking blocks 
is by increasing the suppression coefficient of the inerter.

6  Flexible rocking structures equipped with clutched inerters

6.1  Equations of motion

In this section, we investigate the dynamics of flexible rocking structures equipped with 
twin inerter-clutch devices. To this end, Fig. 13 presents the analytical model considered. 
In it, a lumped mass (m) is fixed on the top of a flexible column of height h, horizontal 
stiffness k and damping coefficient c. The column is fixed to a rigid pad with half-width 
of B resting on a rigid ground. In addition to the mass vibrating about its neutral position 
with a displacement u, the rigid base is able to uplift about points O or O’ with angle � as 
long as the overturning moment is large enough. We assume the friction is large enough 
to prevent sliding between the block and the ground. For convenience of expression, the 
motion of the mass can be defined by using the distance to the pivot point (R) and the angle 
between straight distance and ground ( � ) as generalized Lagrange coordinates. The two 
coordinates (u,� and R,� ) can be related according to Eqs. 34 and 35:
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As with the rigid rocking block, a pair of clutched inerters is connected horizontally con-
nected to the mass intended to resist only the horizontal component of the system’s motion. 
The same clutch model described above is adopted herein to transmit the clutch torque 
( Ti(��) ). Accordingly, the horizontal displacement of the mass is given by:

6.1.1  Phase transition

The motion of a flexible rocking structure can be dissembled into a series of full contact 
phases and rocking phases. During a full contact phase, the base pad lies firmly on the 
ground and only the mass oscillates about its horizontal position. Once the overturning 
condition is reached, the structure would enter into a rocking phase in which the base 
uplifts and keeps rocking while the mass oscillates simultaneously. The criteria of transi-
tion from full contact phase to rocking can be derived by equating overturning moment and 
restoring moment:

leading to the definition of a critical displacement for uplift (Oliveto et al. 2003; Thiers-
Moggia and Málaga-Chuquitaype 2020a):

(34)� = � − sign(�) ⋅ arcsin(H∕R)

(35)u = sign(�) ⋅
�
B −

√
R2 − H2

�

(36)x = sign(�) ⋅ (B − R cos �)

(37)∓
(
Fa + Fb + müg + mü

)
H > mg(B ∓ u)

(38)ucr = ±
gB ∓ 2𝜉𝜔nHu̇

g + 𝜔2
n
H

Fig. 13  Sketch of the flexible rocking modelling and equation parameters
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The transition from rocking phase to full contact phase defined by Chopra and Yim (1985) 
Vertical Velocity Energy Loss (VVEL) model is used here. In it impact is assumed to be 
a perfect inelastic collision process in which the full vertical velocity of the mass is dissi-
pated while the horizontal energy is conservative. As a result, after each impact, the mass 
would move completely horizontally, thus transiting into a full contact phase. The relation 
between pre-impact velocity u̇2,�̇�2 and post-impact velocity u̇1,�̇�1 of the structure is given 
by:

6.1.2  Governing equations for full contact phase

During the full contact phase, the mass oscillates about neutral position subjected to resist-
ance of inerter and the ground acceleration. The mass motion is exactly the same as a fix-
based SDOF structure equipped with twin inerters whose governing equations were given 
by Málaga-Chuquitaype et al. (2019):

where � and �n are the damping ratio and natural frequency of the column-mass oscillator, 
c̄ = c∕J and Ii = Ti∕J are the normalized damping coefficient and force transmitted 
between the interter and the mass, and � =

J

m�2
 is the suppression coefficient.

6.1.3  Governing equations for rocking phase

The governing equations of a flexible rocking structure undergoing rocking phase are 
derived using Lagrange’s equation. The generalized coordinates R, � , �a and �b introduced 
above are employed with this purpose. The kinetic energy of the system is expressed as:

while the potential energy is:

which can be substituted into the Lagrangian:

(39)u̇2 = H�̇� + u̇1

(40)�̇�2 = 0

(41)ü + 2𝜉𝜔nu̇ + 𝜔2
n
u + 𝜎𝜌(Ia + Ib) = −üg

(42)�̈�a + c̄�̇�a − Ia(𝛥𝜃) = 0

(43)�̈�b + c̄�̇�b − Ib(𝛥𝜃) = 0

(44)T =
1

2
m
(
Ṙ2 + R2�̇�2

)
+

1

2
J
(
�̇�2
a
+ �̇�2

b

)

(45)V = sign(�) ⋅ mgR sin � +
1

2
ku2 + ∫ Ta(��)d(��) + ∫ Tb(��)d(��)

(46)L = T − V
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Besides, the corresponding dissipative term for the viscous damping of the inerter and 
mass-column oscillator is defined by Rayleigh’s function as:

while the non-conservative force term due to ground motion is:

Applying Lagrange’s equation to each generalized coordinate:

leads to the following governing equations of the 4-DOF system:

6.2  Numerical solution and model comparison

Figure 14 shows the histories of response of a flexible rocking column with a frequency 
�n∕p = 8 , a size of R0 = 10 m , slenderness of � = 0.2 , and damping ratio of � = 0.02 . 
Where the frequency parameter p for flexible structures is taken as p =

√
mgR0∕I0 with 

I0 being the moment of inertia of the mass with respect to the pivot point. The responses 
of an uncontrolled structure ( � = 0 ) as well as structures connected to single inerters or 
clutched twin inerters are presented. When controlled, the suppression coefficient of inert-
ers and clutched inerters is taken as � = 0.5 . In the case of a single inerter with dissipation 
and the clutched inerter modelled with the proposed model an additional viscous dissipa-
tion in the device itself is assumed with c̄ = 1 s−1 . The structures are subjected to single 
sine pulses of ag∕gtan� = 1.5 and �g∕p = 8.

Figure  14 demonstrates that the introduction of a single inerter without clutch can 
significantly reduce the peak base uplift rotation but has negligible effects on the elastic 
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deformations of the column. The horizontal acceleration levels are also benefited by the 
additional inertia provided by the single inerter. The addition of clutches can further reduce 
the peak uplift rotation and horizontal drift, but only a small improvement in the struc-
ture’s deformation is observed. However, the structure equipped with clutched inerter 
has far more efficient energy dissipation than single inerter, which makes the structure 
quickly reach rest from peak response. Although clutched inerters can improve displace-
ment response, they appear less effective in controlling peak horizontal accelerations under 
single pulses and larger acceleration values than with the single inerter configuration are 
observed.

6.3  Inerter and clutch relative contributions to the response

Figure 15 shows the evolution of energy and its dissipation for the different flexible rock-
ing configurations under investigation. It can be seen in this figure that, for a structure with 
single inerters, part of the inerter’s energy transferred back to the structure during the rock-
ing motion as shown in Fig. 15c and d. In addition, Fig. 15e shows the energy evolution of 
the structure predicted by the classic sequential model, where the energy of inerter is fully 
lost after each disengagement event. This contrasts with the response depicted in Fig. 15f 
which maintains the conservation of energy throughout the motion of inerter. It is worth 
mentioning that the damping inside the inerter can also improve the energy dissipation and 

(a) Elastic deformation. (b) Base rotation.

(c) Drift. (d) Horizontal acceleration.

Fig. 14  Response of flexible rocking structure of �n∕p = 8 , � = 0.2 , R
0
= 10 m and � = 0.02 , subjected to 

a single sine pulse of ag∕g∕tan� = 1.5 and �g∕p = 8
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Fig. 15e and f prove that the clutch can fully prevent the energy stored in inerter from being 
transferred back to structure. It should also be noted that the proposed inerter model with a 
normalized damping ratio of �� = 0.02 has similar dissipating capacity than the sequential 
model used by Thiers-Moggia and Málaga-Chuquitaype (2020a). This becomes apparent in 
the relationships presented in Fig. 15b.

(a) Comparison of the energy in the structure. (b) Total energy comparison.

(c) Single inerter without dissipation. (d) Single inerter with dissipation.

(e) Clutched inerter - sequential model. (f) Clutched inerter - proposed model.

Fig. 15  Evolution of the energy dissipation in alternative models
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The dynamic response for ground motions of different frequencies is examined in 
Fig.  16 which presents the response spectra of structures with � = 0.2 , R0 = 10 m, 
�n∕p = 8 and � = 0.02 for different inerter configurations. This figure confirms the 
observations made above where structures with natural frequency of �n∕p = 8 show a 
behaviour that is dominated by rocking motion instead of elastic deformations. There-
fore, the horizontal drift is controlled mainly by uplift peak rotation, which explains 
partly why different models have similar peak response predictions. The limited effects 
of clutched inerters on peak elastic deformations are also evident from Fig. 16. Moreo-
ver, the increased accelerations predicted by our mechanistic clutch model are also con-
firmed for most of the frequency ratios.

7  Influence of clutch characteristics

7.1  Clutch stiffness

As mentioned in Sect. 4, the clutch rotational stiffness k� controls the rate of torque trans-
mission between the inerter and the structure. In order to examine the influence of different 
realistic values of clutch stiffness (Brzeski and Perlikowski 2017; Zhu and Parker 2005) on 
the dynamic response of inerter-equipped rocking structures the velocity, displacement and 
rotation responses of these structures are presented in Figs. 17 and 18. Figure 17 presents 

(a) Peak elastic deformation. (b) Peak base rotation.

(c) Peak drift. (d) Peak horizontal acceleration.

Fig. 16  Response spectra of flexible rocking structures. m = 1 kg, � = 0.2 , R
0
= 10 m , � = 0.02 , subjected 

to a single sine pulse of ag∕g tan � = 1.5
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a close-up view into the velocity history during the engagement process. A mild juddering 
associated with the engagement-disengagement cycles described above is noticeable for a 

(a) kθ = 100 Nm/rad. (b) kθ = 1000 Nm/rad.

Fig. 17  Inerter and structure velocities for different clutch stiffness values

(a) Elastic deformation. (b) Base rotation.

Fig. 18  Response spectra for flexible inerto-rocking system with � = 0.2 , R
0
= 10 m , � = 0.02 , �n∕p = 8 , 

connected to pair of clutched inerters with different levels of clutch stiffness

(a) Elastic deformation. (b) Base rotation.

Fig. 19  Response spectra for flexible inerto-rocking systems with � = 0.2 , R
0
= 10 m , � = 0.02 , �n∕p = 8 , 

connected to pair of clutched inerters with different level of damping under pulse excitation of amplitude 
ag∕g tan � = 1.5
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low value of k� (Fig. 17a). Higher clutch stiffnesses result in a smoother engagement pro-
cess at the macro scale while softer clutches may cause a small delay in the disengagement 
at the very local level. However, for all practical purposes, the influence of the clutch stiff-
ness is not determinant. This is demonstrated in Fig. 18 which presents the response spec-
tra for flexible inerto-rocking structures with different clutch stiffness values. The struc-
ture under consideration in this figure has the dynamic properties of � = 0.2 , R0 = 10 m, 
� = 0.02 , and �n∕p = 8 while a ground motion of amplitude ag∕g tan � = 1.5 is employed.

7.2  Viscous damping

As discussed previously, one of the most effective means of improving the dynamic 
response of rocking structures with inerters is by increasing the viscous damping in the 
device. This can be achieved by immersing the inerter, or a part of it, into a viscous fluid as 
proposed by Hwang et al. (2007) or Ikago et al. (2012), for example. To analyse this, two 
different levels of damping are explored in Fig. 19: (i) a local inerter viscous damping cor-
responding to �� = 2% of the critical value, which represents typical operational conditions 
of a standard inerter device, and (ii) a damping of �� = 20% which represents supplemental 
damping values provided by external means. The results for an undamped inerter are also 
presented in Fig. 19 for comparison purposes. In all these cases, the inerter’s damping ratio 
�� is defined as �� = cIi∕(2

√
k�Ji) . The lower values of damping are selected considering 

the values usually employed to model the energy dissipation present in the real systems 
due to imperfections, dry friction, internal damping, etc. (Horton et al. 2008) without addi-
tional viscous dampers. While the larger value of damping was used to represent how the 
response of the system changes when we drastically increase the viscous damping coef-
ficient usually with the aid of supplemental damping (Brzeski et al. 2014; Brzeski and Per-
likowski 2017).

It can be observed from Fig.  19 that operational levels of damping (i.e. � = 2% ) are 
practically immaterial to the peak displacement or rotational response of flexible inerto-
rocking structures. However, supplemental damping (i.e. � = 20% ) is able to reduce sig-
nificantly the base rotations (more than halving it for low frequency ratios in the order of 
�g∕p ≈ 5 and reduce the overturning for stiffer structures. Similarly, reductions in peak 
elastic displacement demands are also observed for inerters with important damping levels, 
although the reductions are less dramatic than in the rotations. These observations are valid 
for the full range of frequency ratios investigated.

7.3  Dry friction

The energy dissipation in the inerter system can also be modelled as dry friction, which 
can be more realistic for bare inerters without supplemental damping. To introduce dry 
friction into the model without introducing hard discontinuities, a continuous step function 
is adopted Málaga-Chuquitaype et al. (2019):

(55)F𝜇i =
2fmu

𝜋
arctan(𝜂�̇�i)
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Where f� controls the magnitude of friction and � controls the transition of the frictional 
force as shown in Fig. 20. By replacing the damping terms by dry frictions terms in Eqs. 53 
and 54 a new set of equations governing the motion of the inerters can be found:

(56)�̈�a − Ia +
F𝜇a𝜌

J
= 0

(57)�̈�b − Ib +
F𝜇b𝜌

J
= 0

Fig. 20  Dry friction force for different values of transition coefficient

(a) Elastic deformation. (b) Base rotation.

Fig. 21  Response spectra for flexible inerto-rocking systems with � = 0.2 , R
0
= 10 m , � = 0.02 , �n∕p = 8 , 

connected to pair of clutched inerters with different dry friction levels under pulse excitation of amplitude 
ag∕g tan � = 1.5
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To evaluate the effect of dry friction, Fig. 21 presents the response curves of struc-
tures equipped with clutched inerters with different levels of frictional forces (i.e. f� = 0

, f� = 0.1mrg and f� = 0.2mrg ). These values of friction coefficients, ranging from 0 to 
0.2, are adopted to explore the effects of dry friction on the response of the system with 
ideally frictionless response and a strong friction that can be caused by imperfections or 
targeted friction devices like friction pads (Brzeski et al. 2014; Brzeski and Perlikowski 
2017). In the latter case, however, attention should be placed to the forces transferred to 
the system and the threshold of activation of the device.

In general, the effects of dissipating energy through friction are similar to those 
observed for viscous damping, with operational levels of dissipation resulting in negli-
gible changes in the peak displacement and rotation responses. Higher magnitude of dry 
friction can significantly reduce peak response for both elastic deformation and uplift 
rotation and can completely eliminate the rocking phase for high frequency excitations.

7.4  Influence of gear play

In reality, gears are not perfectly aligned and there are inevitable gaps between their teeth. 
This is known as ‘gear play’ and can be incorporated into the newly proposed model by 
assuming that all the plays present in the inerter can be transferred to the interface between 
the pinion and the rack. Hence, Eqs. 20 and 21 can be modified to introduce a total play 
distance up:

The consideration of gear play effectively introduces a series of collisions whenever the 
clutch engages. This is exemplified in Fig. 22 where the inerter velocity and its correspond-
ing acceleration histories are presented. It can be noticed that upon first engagement, a 
strong discontinuity is introduced in the inerter’s velocity leading to a large peak in the 
acceleration response.

The effects of different levels of gear play are evaluated with reference to Fig. 23 that 
summarizes the response of flexible rocking structures with inerters for gear plays varying 

(58)Ta(��) =
1

2
k�
[
1 + tanh

(
�(x∕� − �a − up)

)]
(x∕� − �a − up)

(59)Tb(��) =
1

2
k�
[
1 + tanh

(
�(x∕� − �b + up)

)]
(x∕� − �b + up)

(a) Inerter velocity. (b) Structural acceleration.

Fig. 22  Collision caused by gear play resulting in non-smooth behaviour and acceleration peaks
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from 0 to 1 cm. This latter value of gear play is very large and was adopted to represent 
faulty devices or gears with broken teeth. It can be concluded from Fig. 23 that even these 
large values of gear play have an almost unnoticeable effect on peak deformations (dis-
placements or rotations).

8  Response under real pulse‑like ground motions

Previous sections of this paper have concerned themselves with the assessment of dif-
ferent modelling strategies that make manifest the different nonlinearties encountered 
in clutched inerto-rocking systems from a fundamental perspective by using coher-
ent harmonic pulses. Real records, however, are non-coherent and as such they have 
a rich frequency content that can sometimes amplify the demands on rocking struc-
tures, especially larger ones (Makris and Roussos 2000). In this section we examine 
the response of relatively large structures subjected to real ground motion records. 
The family of structures selected has dimensions of R0 = 10 m with � = 0.2 and 
� = �� = 0.02 and can be representative of a wall building system or a tall pier. They 
comprise bare uncontrolled flexible rocking systems as well as controlled ones for 
which a twin pair of clutched inerters are employed following both the sequential and 
the alternative modelling approach proposed in this study.

A representative set of 5 earthquake accelerograms is used to construct deformation, 
rotation and acceleration response spectra. The ground motions considered are summarized 

(a) Peak elastic deformation. (b) Peak base rotation.

Fig. 23  Response spectra of flexible rocking structures. � = 0.2 , R
0
= 10 m , � = 0.02 , subjected to a single 

sine pulse of ag∕g tan � = 1.5 , for different levels of gear play

Table 1  Pulse-like ground motion records used.

No. Event Year Station Tp (s) PGV (m/s) Mw

1 Landers 1992 Lucerne 5.1 1.4 7.3
2 Northridge-01 1994 Rinaldi 1.2 1.67 6.7
3 Imperial Valley-06 1979 El Centro Diff Array 5.9 0.6 6.5
4 Superstition Hills-02 1987 Parachute Test Site 2.3 1.07 6.5
5 N. Palm Springs 1986 N. Palm Springs 1.4 0.67 6.1
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in Table 1. They have been selected from the pulse-like database identified by Baker (2007) 
and comprise series with peak ground velocities of up to 1.67 (m/s) and pulse periods rang-
ing from 1.2 to 5.1 (s). The listed records were selected in light of their strong coherent and 

(a) Base rotation.

(b) Elastic deformation.

(c) Drift.

(d) Horizontal acceleration.

Fig. 24  Rocking spectra for a structure of � = 0.2 , R
0
= 10 m , � = 0.02 , subjected to a set of real ground 

motions (Table 1)
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non-coherent components in order to impose appreciable demands in the rocking structures 
being examined.

Figure 24 presents the response spectra generated for structures of different flexibility 
levels ( �n ). Results are presented for peak base rotation, maximum elastic deformation, 
peak drift and absolute horizontal acceleration. Values of elastic deformation, drift and 
absolute acceleration are not reported in those cases where the structure overturns ( � → ∞ ) 
as they are not deemed relevant under such condition. Overall, Fig. 24 demonstrates the 
important reductions in the number of such overturning cases when the clutched inerter 
system is incorporated as discussed in detail by Thiers-Moggia and Málaga-Chuquitaype 
(2020a). Similarly, the noticeable reduction in the dispersion associated with clutched sys-
tems identified in previous studies is also evident.

Figure 24 shows the same trends observed in our previous analyses. The clutched inerter 
system leads to important reductions in base rotation but only mild elastic deformation 
mitigation. Interestingly, however, both the rotation and elastic displacement estimations 
of the clutch model advanced in this study are slightly lower (by around 8%) than the pre-
dictions made on the basis of the sequential engagement law adopted in previous studies. 
This is attributed to the more faithful representation of the engagement process leading to 
a relatively larger number of inerter engagement events over the response history of the 
structure. This level of reductions is fairly constant throughout the frequency range under 
consideration.

Although past research has proved that a single inerter implementation can reduce 
peak accelerations in rocking structures to acceptable levels Thiers-Moggia and Málaga-
Chuquitaype (2020a), the same authors identified the difficulties in controlling accelera-
tions through clutching inerter devices. These difficulties are also evidenced in Fig.  24, 
especially within the range of 12 < 𝜔n < 18 . Moreover, the mechanistic clutch model of 
the present study estimates higher acceleration levels than the sequential model of previous 
studies. This is in line with the discussion presented in previous sections of this paper. In 
some cases, notably for the El Centro record, these peak accelerations may be even higher 
than those experienced in bare structures.

9  Conclusions

In this paper, we have extended previously proposed models of clutched inerto-rocking 
structures by considering an improved mechanistic representation of the clutching system. 
This new formulation enables a more detailed assessment of the inerter’s influence on the 
rocking behaviour, as it explicitly models the flywheel’s rotational response and takes into 
account key clutch parameters like stiffness, gears play, viscous damping and dry friction.

Firstly, the effect of the inerter on the rotation transition was evaluated using an exten-
sion of Housner’s impact formulation. This analysis showed that, in general, the inclusion 
of the inerter results in higher coefficients of restitution, indicating lower energy dissi-
pation during impact. Importantly, this effect was found not to be significant in slender 
blocks, although it can affect the efficiency of the proposed strategy when high apparent 
mass ratios or nonslender structures are considered.

The suitability of this classical impact framework to assess acceleration demands in 
rocking structures was examined next. Although Housner’s approach has been shown to 
provide a good estimation of the amount of energy dissipated during impact, its underly-
ing assumptions imply an instantaneous change of velocity and, therefore, an unrealistic 
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infinite acceleration at the transition instant. Using an alternative formulation based on 
Dirac-Delta forces, it was demonstrated that the infinite acceleration spikes predicted by 
Housner’s model can be ignored under the assumption that impact forces are sufficiently 
distributed over time as to cause continuous velocity transitions, but sharp enough not to 
appreciably affect the rotation response.

The clutch modelling strategy presented in this paper was first compared with the 
sequential approach proposed previously in the scientific literature. The results of 
response history analyses conducted on rigid rocking blocks equipped with clutched 
inerters showed that the sequential clutch formulation leads to a faster amplitude 
decrease in comparison with the newly proposed mechanistic model. This difference is 
explained by the underlying assumption of the sequential formulation, by which energy 
stored in the inerter is dissipated instantly after disengagement. This contrasts with the 
relatively decelerated response of the newly proposed model which is controlled by 
an explicit modelling of the viscous dissipation within the device. Moreover, the new 
mechanistic model was able to predict periods of intensive engagement-disengagement 
activity, a behaviour that has been observed experimentally and that can have significant 
consequences on the acceleration demands.

In order to assess the relative importance of the clutch and inerters’ viscous damping 
on the response improvements observed in the previous analyses, the behaviour of rock-
ing blocks equipped with single and twin inerters with identical levels of internal energy 
dissipation was examined. The results of the analyses showed that the blocks equipped 
with clutched inerters experienced lower rotation demands in comparison with their 
single-inerter counterparts, thus confirming the advantages of incorporating a clutch. 
Moreover, evaluation of the temporal evolution of the system’s energy showed that the 
clutch can prevent the energy stored in the  inerter from being transferred back to the 
structure. In terms of accelerations, however, the intensive engagement-disengagement 
behaviour mentioned above had a detrimental effect, resulting in larger demands for 
the structures equipped with clutched inerters. Nevertheless, it should be noted that in 
all cases the inerter-equipped structures experienced smaller rotation and accelerations 
demands than unprotected ones.

The effects of different clutch parameters on the rocking response of a more general 
flexible oscillator, including stiffness, viscous damping, dry friction and gear play, were 
evaluated considering the newly proposed mechanistic model. Analyses conducted for a 
wide range of ground motion frequencies demonstrated that, for all practical purposes, 
the influence of the clutch stiffness is not determinant. Viscous damping and dry fric-
tion, on the other hand, were shown to have a more significant impact on the rotation 
and elastic deformation responses. Although small values of viscous damping and dry 
friction forces had a negligible effect on the response, values representative of highly 
damped systems (such as viscous mass dampers or clutches with frictional pads) con-
siderably reduced the rocking and deformation demands. Contrastingly, the gear play 
did not have an appreciable effect on the base ration and elastic deformation response, 
but it significantly increased the acceleration demands. This effect is related to the delay 
in the activation of the inerter and subsequent impact between the moving structure and 
the idle flywheel. It should be noted, however, that an adequate quantification of this 
effect requires a more detailed modelling of the impact phenomenon.

Finally, the observations presented above were extended to real ground motions by 
considering the response of a case of study structure to a set of real pulse-like accel-
eration records. In general, the results of these analyses are in agreement with the con-
clusions obtained in the previous sections. Importantly, the mechanistic clutch model 
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proposed in this paper predicts slightly lower rocking demands than the sequential 
model used in previous studies, while both formulations suggest that the incorporation 
of a clutch can increase the acceleration demands in flexible uplifting structures.
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