2,083 research outputs found
Exact ground states of generalized Hubbard models
We present a simple method for the construction of exact ground states of
generalized Hubbard models in arbitrary dimensions. This method is used to
derive rigorous criteria for the stability of various ground state types, like
the -pairing state, or N\'eel and ferromagnetic states. Although the
approach presented here is much simpler than the ones commonly used, it yields
better bounds for the region of stability.Comment: Revtex, 8 page
Ferromagnetism in Correlated Electron Systems: Generalization of Nagaoka's Theorem
Nagaoka's theorem on ferromagnetism in the Hubbard model with one electron
less than half filling is generalized to the case where all possible
nearest-neighbor Coulomb interactions (the density-density interaction ,
bond-charge interaction , exchange interaction , and hopping of double
occupancies ) are included. It is shown that for ferromagnetic exchange
coupling () ground states with maximum spin are stable already at finite
Hubbard interaction . For non-bipartite lattices this requires a hopping
amplitude . For vanishing one obtains as in
Nagaoka's theorem. This shows that the exchange interaction is important
for stabilizing ferromagnetism at finite . Only in the special case
the ferromagnetic state is stable even for , provided the lattice allows
the hole to move around loops.Comment: 13 pages, uuencoded postscript, includes 1 table and 2 figure
Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions
Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives). Other root apocarotenoids (strigolactones) are involved in signalling during early steps of the AM symbiosis but also in stimulation of germination of parasitic plant seeds. Both apocarotenoid classes are predicted to originate from cleavage of a carotenoid substrate by a carotenoid cleavage dioxygenase (CCD), but the precursors and cleavage enzymes are unknown. A Zea mays CCD (ZmCCD1) was cloned by RT-PCR and characterised by expression in carotenoid accumulating E. coli strains and analysis of cleavage products using GC¿MS. ZmCCD1 efficiently cleaves carotenoids at the 9, 10 position and displays 78% amino acid identity to Arabidopsis thaliana CCD1 having similar properties. ZmCCD1 transcript levels were shown to be elevated upon root colonisation by AM fungi. Mycorrhization led to a decrease in seed germination of the parasitic plant Striga hermonthica as examined in a bioassay. ZmCCD1 is proposed to be involved in cyclohexenone and mycorradicin formation in mycorrhizal maize roots but not in strigolactone formatio
Spintronic properties of one-dimensional electron gas in graphene armchair ribbons
We have investigated, using effective mass approach (EMA), magnetic
properties of a one-dimensional electron gas in graphene armchair ribbons when
the electrons of occupy only the lowest conduction subband. We find that
magnetic properties of the one-dimensional electron gas may depend sensitively
on the width of the ribbon. For ribbon widths , a critical point
separates ferromagnetic and paramagnetic states while for
paramagnetic state is stable ( is an integer and is the length of
the unit cell). These width-dependent properties are a consequence of
eigenstates that have a subtle width-dependent mixture of and
states, and can be understood by examining the wavefunction
overlap that appears in the expression for the many-body exchange self-energy.
Ferromagnetic and paramagnetic states may be used for spintronic purposes.Comment: 5 pages, 6 figure
Effects of Next-Nearest-Neighbor Hopping on the Hole Motion in an Antiferromagnetic Background
In this paper we study the effect of next-nearest-neighbor hopping on the
dynamics of a single hole in an antiferromagnetic (N\'{e}el) background. In the
framework of large dimensions the Green function of a hole can be obtained
exactly. The exact density of states of a hole is thus calculated in large
dimensions and on a Bethe lattice with large coordination number. We suggest a
physically motivated generalization to finite dimensions (e.g., 2 and 3). In
we present also the momentum dependent spectral function. With varying
degree, depending on the underlying lattice involved, the discrete spectrum for
holes is replaced by a continuum background and a few resonances at the low
energy end. The latter are the remanents of the bound states of the
model. Their behavior is still largely governed by the parameters and .
The continuum excitations are more sensitive to the energy scales and
.Comment: To appear in Phys. Rev. B, Revtex, 23 pages, 10 figures available on
request from [email protected]
Determining ethylene group disorder levels in -(BEDT-TTF)Cu[N(CN)]Br
We present a detailed structural investigation of the organic superconductor
-(BEDT-TTF)Cu[N(CN)]Br at temperatures from 9 to 300 K.
Anomalies in the dependence of the lattice parameters are associated with a
glass-like transition previously reported at = 77 K. From structure
refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space
group {\it Pnma}, is established at all temperatures. Further, we extract the
dependence of the occupation factor of the eclipsed conformation of the
terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %,
with an increase to 97(3) % at 9 K. We conclude that the glass-like transition
is not primarily caused by configurational freezing-out of the ethylene groups
Robustness of a local Fermi Liquid against Ferromagnetism and Phase Separation
We study the properties of Fermi Liquids with the microscopic constraint of a
local self-energy. In this case the forward scattering sum-rule imposes strong
limitations on the Fermi-Liquid parameters, which rule out any Pomeranchek
instabilities. For both attractive and repulsive interactions, ferromagnetism
and phase separation are suppressed. Superconductivity is possible in an s-wave
channel only. We also study the approach to the metal-insulator transition, and
find a Wilson ratio approaching 2. This ratio and other properties of
Sr_{1-x}La_xTiO_3 are all consistent with the local Fermi Liquid scenario.Comment: 4 pages (twocolumn format), can compile with or without epsf.sty
latex style file -- Postscript files: fig1.ps and fig2.p
Rigorous results on superconducting ground states for attractive extended Hubbard models
We show that the exact ground state for a class of extended Hubbard models
including bond-charge, exchange, and pair-hopping terms, is the Yang
"eta-paired" state for any non-vanishing value of the pair-hopping amplitude,
at least when the on-site Coulomb interaction is attractive enough and the
remaining physical parameters satisfy a single constraint. The ground state is
thus rigorously superconducting. Our result holds on a bipartite lattice in any
dimension, at any band filling, and for arbitrary electron hopping.Comment: 12 page
Hole motion in the Ising antiferromagnet: an application of the recursion method
We study hole motion in the Ising antiferromagnet using the recursion method.
Using the retraceable path approximation we find the hole's Green's function as
well as its wavefunction for arbitrary values of . The effect of small
transverse interaction also is taken into account. Our results provide some
additional insight into the self-consistent Born approximation.Comment: 8 pages, RevTex, no figures. Accepted for publication in Phys.Rev.
- …
