2,083 research outputs found

    Exact ground states of generalized Hubbard models

    Full text link
    We present a simple method for the construction of exact ground states of generalized Hubbard models in arbitrary dimensions. This method is used to derive rigorous criteria for the stability of various ground state types, like the η\eta-pairing state, or N\'eel and ferromagnetic states. Although the approach presented here is much simpler than the ones commonly used, it yields better bounds for the region of stability.Comment: Revtex, 8 page

    Ferromagnetism in Correlated Electron Systems: Generalization of Nagaoka's Theorem

    Full text link
    Nagaoka's theorem on ferromagnetism in the Hubbard model with one electron less than half filling is generalized to the case where all possible nearest-neighbor Coulomb interactions (the density-density interaction VV, bond-charge interaction XX, exchange interaction FF, and hopping of double occupancies FF') are included. It is shown that for ferromagnetic exchange coupling (F>0F>0) ground states with maximum spin are stable already at finite Hubbard interaction U>UcU>U_c. For non-bipartite lattices this requires a hopping amplitude t0t\leq0. For vanishing FF one obtains UcU_c\to\infty as in Nagaoka's theorem. This shows that the exchange interaction FF is important for stabilizing ferromagnetism at finite UU. Only in the special case X=tX=t the ferromagnetic state is stable even for F=0F=0, provided the lattice allows the hole to move around loops.Comment: 13 pages, uuencoded postscript, includes 1 table and 2 figure

    Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions

    Get PDF
    Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives). Other root apocarotenoids (strigolactones) are involved in signalling during early steps of the AM symbiosis but also in stimulation of germination of parasitic plant seeds. Both apocarotenoid classes are predicted to originate from cleavage of a carotenoid substrate by a carotenoid cleavage dioxygenase (CCD), but the precursors and cleavage enzymes are unknown. A Zea mays CCD (ZmCCD1) was cloned by RT-PCR and characterised by expression in carotenoid accumulating E. coli strains and analysis of cleavage products using GC¿MS. ZmCCD1 efficiently cleaves carotenoids at the 9, 10 position and displays 78% amino acid identity to Arabidopsis thaliana CCD1 having similar properties. ZmCCD1 transcript levels were shown to be elevated upon root colonisation by AM fungi. Mycorrhization led to a decrease in seed germination of the parasitic plant Striga hermonthica as examined in a bioassay. ZmCCD1 is proposed to be involved in cyclohexenone and mycorradicin formation in mycorrhizal maize roots but not in strigolactone formatio

    Spintronic properties of one-dimensional electron gas in graphene armchair ribbons

    Full text link
    We have investigated, using effective mass approach (EMA), magnetic properties of a one-dimensional electron gas in graphene armchair ribbons when the electrons of occupy only the lowest conduction subband. We find that magnetic properties of the one-dimensional electron gas may depend sensitively on the width of the ribbon. For ribbon widths Lx=3Ma0L_x=3Ma_0, a critical point separates ferromagnetic and paramagnetic states while for Lx=(3M+1)a0L_x=(3M+1)a_0 paramagnetic state is stable (MM is an integer and a0a_{0} is the length of the unit cell). These width-dependent properties are a consequence of eigenstates that have a subtle width-dependent mixture of K\mathbf{K} and K\mathbf{K'} states, and can be understood by examining the wavefunction overlap that appears in the expression for the many-body exchange self-energy. Ferromagnetic and paramagnetic states may be used for spintronic purposes.Comment: 5 pages, 6 figure

    Effects of Next-Nearest-Neighbor Hopping on the Hole Motion in an Antiferromagnetic Background

    Full text link
    In this paper we study the effect of next-nearest-neighbor hopping on the dynamics of a single hole in an antiferromagnetic (N\'{e}el) background. In the framework of large dimensions the Green function of a hole can be obtained exactly. The exact density of states of a hole is thus calculated in large dimensions and on a Bethe lattice with large coordination number. We suggest a physically motivated generalization to finite dimensions (e.g., 2 and 3). In d=2d=2 we present also the momentum dependent spectral function. With varying degree, depending on the underlying lattice involved, the discrete spectrum for holes is replaced by a continuum background and a few resonances at the low energy end. The latter are the remanents of the bound states of the tJt-J model. Their behavior is still largely governed by the parameters tt and JJ. The continuum excitations are more sensitive to the energy scales tt and t1t_1.Comment: To appear in Phys. Rev. B, Revtex, 23 pages, 10 figures available on request from [email protected]

    Determining ethylene group disorder levels in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Get PDF
    We present a detailed structural investigation of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br at temperatures TT from 9 to 300 K. Anomalies in the TT dependence of the lattice parameters are associated with a glass-like transition previously reported at TgT_g = 77 K. From structure refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space group {\it Pnma}, is established at all temperatures. Further, we extract the TT dependence of the occupation factor of the eclipsed conformation of the terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %, with an increase to 97(3) % at 9 K. We conclude that the glass-like transition is not primarily caused by configurational freezing-out of the ethylene groups

    Robustness of a local Fermi Liquid against Ferromagnetism and Phase Separation

    Full text link
    We study the properties of Fermi Liquids with the microscopic constraint of a local self-energy. In this case the forward scattering sum-rule imposes strong limitations on the Fermi-Liquid parameters, which rule out any Pomeranchek instabilities. For both attractive and repulsive interactions, ferromagnetism and phase separation are suppressed. Superconductivity is possible in an s-wave channel only. We also study the approach to the metal-insulator transition, and find a Wilson ratio approaching 2. This ratio and other properties of Sr_{1-x}La_xTiO_3 are all consistent with the local Fermi Liquid scenario.Comment: 4 pages (twocolumn format), can compile with or without epsf.sty latex style file -- Postscript files: fig1.ps and fig2.p

    Rigorous results on superconducting ground states for attractive extended Hubbard models

    Get PDF
    We show that the exact ground state for a class of extended Hubbard models including bond-charge, exchange, and pair-hopping terms, is the Yang "eta-paired" state for any non-vanishing value of the pair-hopping amplitude, at least when the on-site Coulomb interaction is attractive enough and the remaining physical parameters satisfy a single constraint. The ground state is thus rigorously superconducting. Our result holds on a bipartite lattice in any dimension, at any band filling, and for arbitrary electron hopping.Comment: 12 page

    Hole motion in the Ising antiferromagnet: an application of the recursion method

    Full text link
    We study hole motion in the Ising antiferromagnet using the recursion method. Using the retraceable path approximation we find the hole's Green's function as well as its wavefunction for arbitrary values of t/Jzt/J_z. The effect of small transverse interaction also is taken into account. Our results provide some additional insight into the self-consistent Born approximation.Comment: 8 pages, RevTex, no figures. Accepted for publication in Phys.Rev.
    corecore