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PHYSICAL REVIEW B VOLUME 62, NUMBER 4 15 JULY 2000-II

Temperature and filling dependence of the superconductingr phase
in the Penson-Kolb-Hubbard model

Fabrizio Dolcini and Arianna Montorsi
Dipartimento di Fisica and UnitdNFM, Politecnico di Torino, 1-10129 Torino, Italy
(Received 12 October 1999; revised manuscript received 2 February 2000

We investigate in the Hartree approximation the temperature and filling dependence of the superconducting
7 phase for the Penson-Kolb-Hubbard model. Due to the presence of the pair-hopping term, the phase survives
for repulsive values of the on-site Coulomb interaction, exhibiting an interesting filling and temperature
dependence. The structure of the self-consistent equations peculiar topghase of the model allows us to
explicitly solve them for the chemical potential. The phase diagrams are shown and discussed in dimension 2
and 3. We also show that, when a next-nearest-neighbors hopping term is included, the critical temperature of
the superconducting region increases, and the corresponding range of filling values is shifted away from
half-filling. Comparisons with known exact results are also discussed.

[. INTRODUCTION scheme this is achieved only fat<0. On the contrary, for
appropriate nonvanishing values of the other coupling con-
Interest in strongly correlated electron systems and supestants, the superconducting phase can be proved to exist by

conductivity has motivated some attention on the wide clasgneans of exact integrability methods; the latter results in-

of extended Hubbard modetsndeed, a number of interest- yglve the states known ag,, pairs, namely

ing resultd~® show that for some of these models a super-

conducting phase exists. The Hamiltonian of the extended

Hubbard models reads

_(kt Lokt it of — t
[ms=(KQYMO): K= 2 e¥icfic)= 2, ey ci

HEH:HHUb+ Hx+ HR+ Hv+ Hw+ Hy, (1) € 5

where @)
Huom —t e +u> nn Hubbard, Where_gb is ad-dimensionql vectorqﬁ,_(ﬁ, ...),Bis the first
Hub 021':) zcr: Lot Z LN d Brillouin zone in the reciprocal lattice, anti=1, ... LY.

Noticeably, the stately), enjoy the property of “off diag-
onal long range order” (ODLRO), which implies
HXZXUE,D Z (M~ M —5)cl,¢;,  (bond charge superconductivity® Therefore much effort has been done
through the last years to find which are the relations among
_ the coupling parameters in E(L) guaranteeing that dm) ®
Hx=X2>, 2 ni_,N _,cl.c, (correl. hopping, is the ground state.
(L) o A first set of remarkable results was obtained in 1D for
Vv the subclass of Hamiltonians characterized by the constraint
Hv=§ 2 nin;  (neighboring site charge X=t. In Refs. 6 aNnd 7 the phase diagrahvs filling for the
(i) AAS modelX=t,X=W=V=Y=0 (reported in Fig. 1was
derived atT=0: one can see a superconductive filling-
HW:V_V 2 2 Ci‘rUCT Cio'Cjy (eXchangg independent region, wh'e.re tﬂ@>¢ are degenergte ground
280 g T states for anyp, and a filling dependent zor@gain super-
conducting because it contains at leps, pairs rising up
—vS ol cf , , to positive values ol. Unfortunately, in contrast to the real
HY—YGJ) €i1Ci,1Cj.1€j,1  (Pair hopping. case of superconducting materials, the superconducting
phase turns out to have a maximum at half filling. A similar
Here CIU and ¢; , are fermionic creation and annihilation phase diagrantsee Fig. 1 was also obtained in Refs. 4 and
operators, whereruns over the_? sites of ad-dimensional 5 for the EKS Hamiltonian, characterized bBy=t,X=0,
lattice A, ando e {7, ]} is the spin label; the usual anticom- y—\y=v=—1. There the filling independent phase is made
mutation rules{c; ,+,C; ,}=0, {Ci,ijT,,,/}=5i,j Sg,00 NOID. of | ), with only ¢=0, sinceY+0: in fact a nonvanishing
The symbok(i,j) stands for nearest neighborsAn Finally,  pair-hopping term removes the degeneracy| L) P [7)0
niya=cifgciyg is the number of electrons with spinat sitei,  being energetically favorite for <0, while | ) . is favorite
andn;=n;; +n;; . For the ordinary Hubbard model,;,, no  for Y>0. Moreover, as Fig. 1 shows, a nonvanishiglso
exact result supports the existence of a superconductingontributes to rise up the superconducting region towards
phase at finite values dfl, and even within a mean-field positive values ofJ.
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Sr 1. PENSON-KOLB-HUBBARD MODEL AND HARTREE
I APPROACH TO THE = PHASE

The Penson-Kolb-Hubbard Hamiltonian reads

Hpkn=Huupt HY+M2i ni, (3

whereH,,, andHy are given in Eq(1) and the last term is
the chemical potential. The cae=0 in 1D was first exam-
ined by Penson and Kolbto study a short range interaction
between electron pairs of small radi@tually zerg, in con-
trast with the BCS theory, where the size of the Cooper pairs
By s = 5 20 is comparatively large. This led to envisagereal space
formulation for the electron pairing, which is very interesting

n (filling) in many contexts of condensed matter physics.
FIG. 1. Phase diagram id=1 at T=0 of AAS model(solid Later on, the Coulomb repulsion terbh was also taken
curve and EKS model (dot-dashed curye In the filling- into account by Ref. 14, where the PKH Hamiltonian was

independentsuperconductingregion then,, pairs are ground state. Proposed as an effective phenomenological model capturing
Above it, a filling-dependent regiotstill superconductingexists.  the main physical features of doped materials, such as high-
In the EKS model thepair hoppingterm contributes to extend the T, superconductors. Indeed if we assume that, due to some
superconducting zone towards positive valuef/ofn such exactly ~ (yet unknown microscopic mechanism, localized pairs can
solved 1D models the phase diagram reaches a maximum aroutge formed, then their displacement in the lattice should be
half filling. described by a pair hopping term competing with a single
carrier hopping amplitudé. The Coulomb repulsion term

More recently, it has also been reali?atiat, at least in Should account for the insulating phase. _
order to obtain the filling independent superconducting re- MOre recently a slave boson wide study of the different
gion, some of the constraints on the parametiergarticular possible phases of the model at zero temperature has also

X=t, which is not very physicalare not necessary, provided bee'n QOné? In particular, a region characteridzed Tby anon-
that a pair-hopping term is present. Also, as longXast, vanishing value of the order parameigr=(1/L%(K;) was

: tis qi T hp

only |n), states could become ground states, the othe}pund’ hereK, is given by theK,, in Eq. (2) with ¢ =, and
choices of¢ in Eq. (2) giving states that cannot be eigen- ) stands for the average value on the grand canonical sta-
states of Eq(1) tistical ensemble. In the following we shall denote such a

. . . phase asr phase. The latter turns out to be favorite with
On the contrary, no exact result is available concernin

: - ith di >0.
the existence of the more structured filling dependent super-e spect to otheyp phases with differend values forY =0

ducti . hen the ab traint h At zero temperature, the analysis performed in Ref. 15 by
conducting region when the above constraints on the paray, o 55 of gifferent approximation schemes clarifies for which

gters are rem.ov.ed. It is one purpose of the presen_t paper ange of parameters the phase is energetically favorite also
investigate within the Hartree scheme such possibility, agii respect to othefnonsuperconductingordered phases.
well as to test how the superconducting region modifies ayjithin this range, we expect that for low enough tempera-
T#0. tures the thermal energy is not sufficient to let other phases

Due to the relevance of the pair-hopping term to stabilizeemerge. The Hartree approximation then decomposes the
the 7 ,-pairs phase, and in order to make the physical mecha?KH Hamiltonian into the following sum ok-space com-
nism more clear, we shall focus on a subcase of the extendeduting Hamiltonians:

model in which, apart from the pure Hubbard terms, only the

pair hopping amplitude is taken different from zero. This is — —

known in the literature as Penson-Kolb-Hubbard model. We HPKH”I;E:B (= (tet )N = (teq it Nz

want to emphasize here that the presence of other terms in

Eq. (1) is not expected to affect our results in a qualitative +U[xqclcl  +xic i« cn]1-0[x,, @
way, as other recent numerical studies confitrt?

In Sec. Il we give the Hamiltonian and derive within the whereU=U —qY (g being the number of nearest neighbors,
Hartree scheme the temperature dependent equations for tBgual to 2D for a hypercubic Iattii;eandﬁz w—nU/2 is the
filling and the self-consistent superconducting order paramHartree-renormalized chemical potential. The sum in (&y.
eter. In Sec. lll we solve the equations in dimension 2 and 3suns over the Brillouin zon® and thek vectors are mea-
and show the temperature and filling dependence of the sured in units of the inverse lattice spacifige., — m<Kk;
perconducting phase in these cases. In Sec. IV we add to ther).

Hamiltonian a next-nearest-neighbors contribution to the In contrast with Eq.(3), the linearized Hamiltoniart4)
hopping term, and we show how this affects the filling anddoes not preserve the number of particles; indeed in a Har-
temperature dependence of the superconducting phase. Fiee picture ther phase has to be thought of as a superposi-
nally, in Sec. V we discuss our results and give some contion of z. pairs involving different number of pairs, the
clusions. averagenumber of electrons being fixed through the chemi-
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cal potential. A standard calculation allows to derive the

Hartree grand potentialper particlé o in the thermody-
namic limit as

1
w=— f dk
(2m)3)e
Re=(Ci

with Dy=t(e—e,_)/2, A=C2+U|x,|%
+02x,|)Y2andC = u+t(e,+ €, )/2. In order to inves-

D, +sR
2

Ak+% E In

s=*1

2 coshg

tigate the thermodynamical properties of the system one ha

to implement the self-consistency equatiéa/dx =0 for

the order parameter. Such equation gives, as usual, a solutic

x,=0 for T=T,, and a solutiorx,#0 for T<T,. It can be

shown that ther phase(i.e., x,#0) exists only whenU

=U—-qVY=0, that is when the pair-hoppiny>0 term
renormalizes the interactiod>0 to an effectiveattractive
regime. Investigating in particular th€<T, regime, the
self-consistency relation can be written as

- 1 1 D+ SR,
U t=- fdk— tanh8—————. (5
il MaR, 2, ST

Moreover, one must also satisfy the filling equatiam,
=Jdwldu, which reads

k D+ SR
WJ’BCH(Z—RK S:Ezl stanhBT. (6)

Equations(5) and (6) constitute theparametricform of the
equation of state. In order to get to oplsedform, one
should in principle invert EQ6) obtainingu as a function of
n, T andU, and then insert it into Eq(5). The thermody-
namics of the model will then be expressed in terms df
andU. Noticeably, comparing Eq¢5) and (6) it is easy to
show that wheneveg, = — ¢, the chemical potential can
be exactlyinverted. In this case we have

n=1+

_1 7
p=—"U. (7)

We wish to stress that for a given model, even within thet
Hartree approximation, it is not obvious at all that the chemi-
cal potential can be inverted exactly: in the PKH model this

is a peculiar feature of the phase(not shared by 0 phase

Equation(7) holds in any dimension for a hypercubic lattice

when dealing with anearest-neighbortiopping term, since
the dispersion relation isKZZ?: 12 cosk;. However, when a
next-nearest-neighborserm is included, the form ofe,
changes so that Eq7) does not hold any longgisee Sec.
V).

IIl. TEMPERATURE AND FILLING DEPENDENCE
OF THE PHASE DIAGRAM IN d=2 AND d=3
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-02 |-

—— K T/t=0
e KT /1= 1110
-------- K.T/t=1/2

-0.4 |-
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-0.6 |-
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0.0 0.5 1.0 1.5 2.0
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FIG. 2. Phase diagram of the phase ird=2; the critical value
U, of the effective attractiot) =U —qY is plotted versus the filling
for some values of the temperatufe At a givenT the = phase
exists forU=<U,; hereA=8t is the bandwidth andj=4 is the
number of nearest neighbors. The valuetiodre negative because
the pair hopping term renormalizes the Coulomb repulsioto a
negative regime. The curves are centered around half-filling; at
=0 afilling independent region exists for< — A, like in AAS and
EKS models(see Fig. 1

As noticed in Sec. Il, besides the parametric fgBnand
(6), in this case we can also deal with one closed form;
indeed, sinces,=—€,_, Ry is independent ok, and thus
Eqg. (7) holds. By substitutinge into R, and thenR, into
Eq. (5), we obtain from Eq(6) the critical equation

P

] KOO} =a(n), @)

s te+sUc8(Nn)/2
> anh B >

whered(n)=1-n is the “doping.”

Since Eq.(8) is invariant under the transformatiaf(n)
——48(n), itis easily seen thdll, is symmetric with respect
o the value at half-filling i=1). The critical curves ird
=2 andd=3 are plotted in Figs. 2 and 3 respectively, where
use has been made of the density of staj€¥(e) [with
normalization (2r) ~%dk=deg@ ()] which is known in lit-
erature ford=2,3.

For the sake of consistency with our approximation, we
have plotted the region of the phase diagram where the val-
ues ofU do not exceed the bandwidth=4td.

Notice the different behavior df, in the two cases, in
particular for low temperatures. Indeed d~2 we have a
very sharp, cuspidlike shape at half-filling, whiled=3 a
“plateau” is obtained, meaning that the effective interaction
threshold is almost independent of the density of electrons in
the lattice for a rather wide range of This effect is due to

In this section we consider the case of a nearest neighbotge quite different behavior of the density of stag® and
hopping term. We aim to derive the features of the criticalg(®), |ndeed using the parametric form it is possible to show

values ofU versusn for a given temperatur, in order to
compare them with known solution of similar modétee
Sec. \J. The critical curved .= U(n) is obtained from Egs.
(5) and(6) by settingx,=0 into Ry.

that at lowT’s the shape oﬁc in the neighborhood of half-
filling is governed by the behavior @® arounde=0. In
fact, inserting Eq(7) into Eq. (8), and making use of the
density of stateg(®(¢), it is possible to deduce that
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-0.5 - 0.2 -
Y N = ok *= .
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-------- kT/t=1 o
09 |- 3
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00 05 o s 20 o0 o5 o s 20
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FIG. 3. Phase diagram of the phase ind=3;A=12 is the FIG. 4. Ther phase diagram id=2 for different values of the

bandwidth andy=6 is the number of nearest neighbors. With re- next-nearest-neighbors hopping amplitudeat the temperature
spect to the caseé=2 (see Fig. 2the curves have a plateau around kg T/t=0.1. Notice that whenr is increased the superconducting
haIf-flIIlng, indeed atT=0 the hlgheSt values d.ﬂc are reached at region rises up towards less negative values Oﬁh;eu 7qY, and

the Symmetric values~0.4 andn~1.6. As the temperature is its maximum is reached at Rnax which moves away from half-
increased, they,, pairs start breaking up and the extension of#he fjlling. This means that, at a given temperature, the next-nearest-

phase reduces. neighbors interaction reduces the effective attractioryielding an

increase of the highest reachable critical temperdaisee also Fig.

+ €max -1
Dc<n=1):—<f g“”(e)pﬁ(e)), o 2

~ €max

tures. In particular, the equation for the critical surface has to
be given only in the parametric fors) and(6), u being the
parameter.

We are here interested in the cabe 2. In this case the
(10) density of states reads

where ps(€) = gt/4 cosh 4(Bt/2¢). This holds forany tem-
peratureT. In particular whenT—0 Eq. (9) yields

U(n=1)=

g@(0)’
Now, sinceg® is almost constant aroune=0, whenT 0@ (&)= 1 K<1—(6/4— )? 13
~0 Eq.(8) gives “ 2721+ ae l+tae )
1—n~ +|f‘g(3)(e)%—2;9(3)(e)|5=0, (11) Wherea is assumed to b&y|<1/2, since the next-nearest-
—lul neighbors term is expected to be small with respect to the

. . ~ ) nearest-neighbors one. Fer=0 we recover the usual form.
and using Eq(7) we obtain thatJ, is actually independent

i iong®@ i ine: in-
of n [indeed g¥)(0)=0.1427 and so 1/0.14277.0078 S'Ot'ge th‘:}‘t fora =0 the fg?‘:t'ongﬁ 'Sh”m e
which is just the value 0Bl around half-filing wherT—=0], ~ 9c€d We haves™(—€)=g%;(e). Thus the critical curve),

It can also be proved that &=0 the plateau is slightly VSN acquires an asymmetric form, the highest valuelJof
falling now at an,,#1, as shown in Fig. 4. Moreover, at a
given temperaturd, such a maximum of the critical curve is
shifted upward with respect to the curve of the case0.
This means that at a giveh the effect of the next-nearest-

neighbors term is teeducethe “optimal” effective attrac-
IV. THE NEXT-NEAREST-NEIGHBORS CONTRIBUTION tion U. In turn, this implies at a givel) the raising of the

Let us now turn to the case when in the Hamiltoni@na highest critical temperature reachable by doping the system.

next-nearest-neighbors contribution is included in the hop- We have also studied hown., depends onr. The rela-
ping term, which therefore becomes tion is almost linear fofa|=<0.4, while it displays a sudden

increase of slope aroundr|~0.45; in Fig. 5 we have ex-
tended the curve to the range=0e| <1 (which could be still
—tz > CiT,aCj,o_ at 2 > CiT,aCj,o- (120 acceptable in principleto show hown,,,, approaches the
(i) o (i) o limiting valuesn=0 orn=2. Notice that the curve is odd in
The latter term breaks the particle-hqﬂﬁae‘“' ic; symme- @ this is because the parametric E(S. and(6)~are~invari-
try of the model. The dispersion relation reads neyw ant under the transformation— — u;a— —a;U—U, and
zgid:lz cosk+aZi ;<44 cosk cosk;. As observed at the therefore one can show, in agreement with Ref. 16, that
end of Sec. II, the symmetrgt,= — €., does not hold any- T,(U,n;a)=T,(U,2—n;—a). It is possible to see that the
more. This yields both mathematical and physical new feaeurve depends very weakly on the temperaflire

concave, so that the highest valueldf is actually reached
away from half-filling, at the symmetric values~0.4 and
n~1.6.
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20 V. DISCUSSION AND CONCLUSIONS

The phase diagrams obtained within the Hartree scheme

can be given a more precise physical interpretation by com-
x paring them with the 1D exact results known for some very
i specific cases. Strictly speaking, such a comparison is only
possible forT=0, since the phase diagram of these inte-
grable models is not known &t# 0. In so doing, we observe
that at zero temperature our results in Fig. 2 and Fig. 3 have
the same structure as those in Fig. 1. One can recognize three
05 - distinct regions in the phase space. The first one is charac-
terized by filling independenir phase. By reducing the ef-

. fective attractiorlJ, one enters a second region in which the
00 v : v : v existence of ther phase depends on the actual filling. Fi-
o nally, above the critical curve the phase disappears.
Thus, the comparison with the exactly solved 1D cases,
FIG. 5. The behavior ofi, (i.€., the point of maximum for the |ead us to interpret the filling independent region as the
curves of Fig. 4as a function of the next-nearest-neighbors paramphase in which all particles are pairedsn pairs(2). This is
etera, at temperatu_rkB_T/t=0.l. The curve i_s odd. NoFice that for j, agreement with known result ih>1 .2 The second region
|2|=0.4 the behavior is almost linear; ps| is further increased, ghoyid be characterized by simultaneous presence of paired,
Nmax @pproaches 0 or 2, as one can also see in Fig. 4. This behaviol, haired electrons and empty sites, whereas in the third one
of na depends very weakly on the temperatiire no paired electrons could move.
Switching on the temperature, thermal fluctuations are ex-
Finally, we have plotted the phase diagramTgfvsnat  pected to break pairs. The dependence on the temperature of
fixed @, shown in Fig. 6. We can observe that the next-our phase diagrams supports this idea. Actually for a given
nearest-neighbors term has mainly two effects. First it shiftdilling n, the greater becomds the greater must be the mag-
away from half-filling the range of values ofat which the nitude of the effective attractive interactidsh in order to
superconducting phase exists; this suggests that the systémep thez,. pairs bound together. In fact in Figs. 2 and 3 the
has to be doped in order to observe a superconducting beurves of highell’s lay below the lowefT’s ones(this result
havior. Secondly, it raises the highest reachable critical temean be proved rigorouslylt is worth recalling that, thanks to
perature with respect to the case where only a nearest neigthe presence of the pair-hopping term, an effective attractive
bors interaction is considered. Having in mind theinteractionU is consistent with a positive value of the Cou-
phenomenology of high~ materials, this study supports the lomb interactionU. Hence the present Hartree treatment of
idea that the actual microscopic Hamiltonian should bethe thermodynamics of the PKH model yields a structured
particle-holenot-invariant. filing dependent superconducting phase even in presence of
repulsive on site Coulomb interaction between electrons. At
fixed temperature, the actual border of sucphase could be
eventually modified around half-filling due to the competi-
tion with antiferromagnetic order. Finally, we stress that the
phase diagram in Fig. 6 —obtained by including the next-
nearest-neighbors hopping term—exhibits appealing fea-
tures: fora#0 the optimal doping of the superconducting
region is ain,,,#1, and the critical temperature is enhanced.
Moreover, with respect to the results reported in Ref. 16 on
the attractive Hubbard model, our figure shows that even at
T=0 the superconducting phase exists only for an appropri-
ate range of filling valuesyotincluding half-filling. We em-
phasize that the whole curve of the critical temperature vs
filling (6) actually reminds the one obtained for high-ma-
: : terials.
0,00 b The study of the influence that particle-hole nonsymmet-
ric terms in the Hamiltonian have on the features of the
phase diagram has been worked out in 2D, the conduction in
FIG. 6. The critical temperature versus the fillingdr 2, fora  high-T superconducting materials typically taking place
given valueU = — 4t of the effective attraction. Here is the pa- along the cup(ate p[anes. AS the, Hartree_apprpach IS more
rameter of the term ohext-nearest-neighbor€NNN) hopping, ~ accurate the higher is the dimension, dealing with a 3D and
which breaks the particle-hole symmetry of the model. With respec@nisotropicorder parameter would possibly be more reliable.
to the casea=0, the NNN term yields both the increase of the WOrk is in progress along these lines. At the same time,
highest critical temperature and the displacement away from halfSince the results obtained here are encouraging, a numerical
filling of the superconductingr phase. In fact the highedt, is  study of the temperature behavior of the present model in
reached ah~1.3. d=2 would be probative.

0.20 -

0.15 -

kT, /t

0.10 -

n (filling)
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