152 research outputs found

    Transfer thermodynamics of triclosan from water to organic solvents with different hydrogen bonding capability

    Get PDF
    The thermodynamic functions Gibbs energy, enthalpy and entropy for the dissolution and mixing processes of triclosan (TS) in water are presented. These quantities were calculated by means of the van't Hoff and Gibbs equations from solubility values determined at temperatures ranging between 293.15 and 313.15 K. In addition, the corresponding thermodynamic quantities of the drug transfer processes from water to different organic solvents displaying different hydrogen bonding capability were also calculated. In all the evaluated cases, Gibbs energy of transfer comprised negative values, indicating the preference of TS for all the organic media evaluated. Nevertheless, enthalpy and entropy of transfer assumed positive or negative values according to every specific system. It was clear that hydrogen bonding plays a significant role in the dissolution and transfer processes of this antibacterial agent.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    A Compact Representation of Drawing Movements with Sequences of Parabolic Primitives

    Get PDF
    Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing jerk) motion is satisfied for parabolic trajectories having constant equi-affine speed, which thus comply with the geometric constraint known as the two-thirds power law. Here we empirically test the hypothesis that parabolic segments provide a compact representation of spontaneous drawing movements. Monkey scribblings performed during a period of practice were recorded. Practiced hand paths could be approximated well by relatively long parabolic segments. Following practice, the orientations and spatial locations of the fitted parabolic segments could be drawn from only 2–4 clusters, and there was less discrepancy between the fitted parabolic segments and the executed paths. This enabled us to show that well-practiced spontaneous scribbling movements can be represented as sequences (“words”) of a small number of elementary parabolic primitives (“letters”). A movement primitive can be defined as a movement entity that cannot be intentionally stopped before its completion. We found that in a well-trained monkey a movement was usually decelerated after receiving a reward, but it stopped only after the completion of a sequence composed of several parabolic segments. Piece-wise parabolic segments can be generated by applying affine geometric transformations to a single parabolic template. Thus, complex movements might be constructed by applying sequences of suitable geometric transformations to a few templates. Our findings therefore suggest that the motor system aims at achieving more parsimonious internal representations through practice, that parabolas serve as geometric primitives and that non-Euclidean variables are employed in internal movement representations (due to the special role of parabolas in equi-affine geometry)

    “Biological Geometry Perception”: Visual Discrimination of Eccentricity Is Related to Individual Motor Preferences

    Get PDF
    In the continuum between a stroke and a circle including all possible ellipses, some eccentricities seem more “biologically preferred” than others by the motor system, probably because they imply less demanding coordination patterns. Based on the idea that biological motion perception relies on knowledge of the laws that govern the motor system, we investigated whether motorically preferential and non-preferential eccentricities are visually discriminated differently. In contrast with previous studies that were interested in the effect of kinematic/time features of movements on their visual perception, we focused on geometric/spatial features, and therefore used a static visual display.In a dual-task paradigm, participants visually discriminated 13 static ellipses of various eccentricities while performing a finger-thumb opposition sequence with either the dominant or the non-dominant hand. Our assumption was that because the movements used to trace ellipses are strongly lateralized, a motor task performed with the dominant hand should affect the simultaneous visual discrimination more strongly. We found that visual discrimination was not affected when the motor task was performed by the non-dominant hand. Conversely, it was impaired when the motor task was performed with the dominant hand, but only for the ellipses that we defined as preferred by the motor system, based on an assessment of individual preferences during an independent graphomotor task.Visual discrimination of ellipses depends on the state of the motor neural networks controlling the dominant hand, but only when their eccentricity is “biologically preferred”. Importantly, this effect emerges on the basis of a static display, suggesting that what we call “biological geometry”, i.e., geometric features resulting from preferential movements is relevant information for the visual processing of bidimensional shapes

    Affine differential geometry analysis of human arm movements

    Get PDF
    Humans interact with their environment through sensory information and motor actions. These interactions may be understood via the underlying geometry of both perception and action. While the motor space is typically considered by default to be Euclidean, persistent behavioral observations point to a different underlying geometric structure. These observed regularities include the “two-thirds power law” which connects path curvature with velocity, and “local isochrony” which prescribes the relation between movement time and its extent. Starting with these empirical observations, we have developed a mathematical framework based on differential geometry, Lie group theory and Cartan’s moving frame method for the analysis of human hand trajectories. We also use this method to identify possible motion primitives, i.e., elementary building blocks from which more complicated movements are constructed. We show that a natural geometric description of continuous repetitive hand trajectories is not Euclidean but equi-affine. Specifically, equi-affine velocity is piecewise constant along movement segments, and movement execution time for a given segment is proportional to its equi-affine arc-length. Using this mathematical framework, we then analyze experimentally recorded drawing movements. To examine movement segmentation and classification, the two fundamental equi-affine differential invariants—equi-affine arc-length and curvature are calculated for the recorded movements. We also discuss the possible role of conic sections, i.e., curves with constant equi-affine curvature, as motor primitives and focus in more detail on parabolas, the equi-affine geodesics. Finally, we explore possible schemes for the internal neural coding of motor commands by showing that the equi-affine framework is compatible with the common model of population coding of the hand velocity vector when combined with a simple assumption on its dynamics. We then discuss several alternative explanations for the role that the equi-affine metric may play in internal representations of motion perception and production

    Control of somatosensory cortical processing by thalamic posterior medial nucleus: A new role of thalamus in cortical function

    Full text link
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm) is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1) in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane- anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.This work was supported by a grant from Ministerio de Economia y Competitividad (BFU2012- 36107

    Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells

    Get PDF
    Dental-derived mesenchymal stem cells (MSCs) provide an advantageous therapeutic option for tissue engineering due to their high accessibility and bioavailability. However, delivering MSCs to defect sites while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated tissue regeneration. Here, we tested the osteogenic and adipogenic differentiation capacity of dental pulp stem cells (DPSCs) in a thermoreversible Pluronic F127 hydrogel scaffold encapsulation system in vitro. DPSCs were encapsulated in Pluronic(®) F-127 hydrogel and stem cell viability, proliferation and differentiation into adipogenic and osteogenic tissues were evaluated. The degradation profile and swelling kinetics of the hydrogel were also analyzed. Our results confirmed that Pluronic F-127 is a promising and non-toxic scaffold for encapsulation of DPSCs as well as control human bone marrow MSCs (hBMMSCs), yielding high stem cell viability and proliferation. Moreover, after 2 weeks of differentiation in vitro, DPSCs as well as hBMMSCs exhibited high levels of mRNA expression for osteogenic and adipogenic gene markers via PCR analysis. Our histochemical staining further confirmed the ability of Pluronic F-127 to direct the differentiation of these stem cells into osteogenic and adipogenic tissues. Furthermore, our results revealed that Pluronic F-127 has a dense tubular and reticular network morphology, which contributes to its high permeability and solubility, consistent with its high degradability in the tested conditions. Altogether, our findings demonstrate that Pluronic F-127 is a promising scaffold for encapsulation of DPSCs and can be considered for cell delivery purposes in tissue engineering

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    Thermodynamics of Transfer Processes of Triclosan from Water to Some Organic Solvents with Different Hydrogen Bonding Capability

    No full text
    The thermodynamic functions Gibbs energy, enthalpy and entropy for the dissolution and mixing processes of triclosan (TS) in water are presented. These quantities were calculated by using the van’t Hoff and Gibbs equations from solubility values determined in the temperature range from 293.15 to 313.15 K. In addition, the corresponding thermodynamic quantities of the drug transfer processes from water to some organic solvents with different hydrogen bonding capability were also calculated. In all cases, Gibbs energy of transfer comprised negative values, indicating the preference of TS for all the organic media evaluated. Nevertheless, enthalpy and entropy of transfer assumed positive or negative values according to specific system. It was clear that hydrogen bonding plays a significant role on dissolution and transfer processes.Fil: Delgado, Daniel R.. Universidad Nacional de Colombia; ColombiaFil: Sosnik, Alejandro Dario. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Martínez, Fleming. Universidad Nacional de Colombia; Colombi

    Development and preclinical evaluation of acellular collagen scaffolding and autologous artificial connective tissue in the regeneration of oral mucosa wounds

    Get PDF
    This work assessed wound healing response in rabbit oral lesions grafted with autologous artificial connective tissue or acellular collagen scaffolds. Autologous artificial oral connective tissue (AACT) was produced using rabbit fibroblasts and collagen I scaffolds. Before implantation, AACT grafts were assayed to demonstrate the presence of fibroblasts and extracellular matrix components, as well as the expression of characteristic genes and secretion of chemokines, cytokines, and growth factors. AACT grafts were tested in the rabbits from which the fibroblasts were obtained, whereas acellular collagen type I scaffolds (CS) were evaluated in a separate group of rabbits. In both cases, contralateral wounds closed by secondary intention were used as controls. In a separate experiment, AACT-grafted wounds were directly compared with contralateral CS-grafted wounds in the same animals. Wound contraction and histological parameters were examined to evaluate closure differences between the treatments in the three animal experiments performed. Contraction of wounds grafted with AACT and CS was significantly lower than in their controls (p < 0.05). Additionally, AACT significantly lowered wound contraction when compared with CS (p < 0.05). Intriguingly, it was observed that AACT-grafted wounds initially displayed a significantly higher (p < 0.05)—albeit transient—inflammatory response than seen in CS-grafted wounds and secondary healed wounds. This suggests that an early inflammatory component may contribute to tissue regeneration. Altogether, the results suggest that AACT- and CS-grafted wounds favor regeneration of oral mucosa.Fil: Espinosa, Lady G.. Universidad Nacional de Colombia; ColombiaFil: Sosnik, Alejandro Dario. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fontanilla, Marta R.. Universidad Nacional de Colombia; Colombi
    corecore