191 research outputs found

    A Review of and Perspectives on Global Change Modeling for Northern Eurasia

    Get PDF
    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Major modeling efforts have shown that environmental and socioeconomic impacts in Northern Eurasia can have major implications for the biodiversity, ecosystems services, environmental sustainability, and carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for Integrated Assessment Models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system.We acknowledge the funding from the US National Aeronautics and Space Administration (NASA) Land-Cover and Land-Use Change (LCLUC) Program, which provided support for Erwan Monier, David Kicklighter, Andrei Sokolov, Qianlai Zhuang and Sergey Paltsev under grant NNX14AD91G and Irina Sokolik under grant NNX14AD88G. Support for Pavel Groisman was provided by Grant 14.B25.31.0026 of the Ministry of Education and Science of the Russian Federation and by Project “Arctic Climate Change and its Impact on Environment, Infrastructures, and Resource Availability” sponsored by ANR (France), RFBR (Russia), and NSF (USA) in response to Belmont Forum Collaborative Research Action on Arctic Observing and Research for Sustainability. The Joint Program on the Science and Policy of Global Change is funded by a number of federal agencies and a consortium of 40 industrial and foundation sponsor (for the complete list see http://globalchange.mit.edu/sponsors)

    3ARM: A Fast, Accurate Radiative Transfer Model for use in Climate Models

    Get PDF
    A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation

    The Construction of Quantum Field Operators: Something of Interest

    Full text link
    We draw attention to some tune problems in constructions of the quantum-field operators for spins 1/2 and 1. They are related to the existence of negative-energy and acausal solutions of relativistic wave equations. Particular attention is paid to the chiral theories, and to the method of the Lorentz boosts.Comment: 31 pages, no figures. The invited talk at the VIII International Workshop "Applied Category Theory. Graph-Operad-Logic", San Blas, Nayarit, Mexico, January 9-16, 2010, and at the 6th International Conference on the Dark Side of the Universe (DSU2010), Leon, Gto, Mexico, June 1-6, 201

    Extra Dirac Equations

    Get PDF
    This paper has rather a pedagogical meaning. Surprising symmetries in the (j,0)⊕(0,j)(j,0)\oplus (0,j) Lorentz group representation space are analyzed. The aim is to draw reader's attention to the possibility of describing the particle world on the ground of the Dirac "doubles". Several tune points of the variational principle for this kind of equations are briefly discussed.Comment: REVTeX 3.0, 14p

    Neutral Particles in Light of the Majorana-Ahluwalia Ideas

    Get PDF
    The first part of this article (Sections I and II) presents oneself an overview of theory and phenomenology of truly neutral particles based on the papers of Majorana, Racah, Furry, McLennan and Case. The recent development of the construct, undertaken by Ahluwalia [{\it Mod. Phys. Lett. A}{\bf 9} (1994) 439; {\it Acta Phys. Polon. B}{\bf 25} (1994) 1267; Preprints LANL LA-UR-94-1252, LA-UR-94-3118], could be relevant for explanation of the present experimental situation in neutrino physics and astrophysics. In Section III the new fundamental wave equations for self/anti-self conjugate type-II spinors, proposed by Ahluwalia, are re-casted to covariant form. The connection with the Foldy-Nigam-Bargmann-Wightman- Wigner (FNBWW) type quantum field theory is found. The possible applications to the problem of neutrino oscillations are discussed.Comment: REVTEX file. 21pp. No figure

    Management of singlet and triplet excitons for efficient white organic light-emitting devices

    Full text link
    Lighting accounts for approximately 22 per cent of the electricity consumed in buildings in the United States, with 40 per cent of that amount consumed by inefficient (similar to 15 lm W-1) incandescent lamps(1,2). This has generated increased interest in the use of white electroluminescent organic light-emitting devices, owing to their potential for significantly improved efficiency over incandescent sources combined with low-cost, high-throughput manufacturability. The most impressive characteristics of such devices reported to date have been achieved in all-phosphor-doped devices, which have the potential for 100 per cent internal quantum efficiency(2): the phosphorescent molecules harness the triplet excitons that constitute three-quarters of the bound electron-hole pairs that form during charge injection, and which (unlike the remaining singlet excitons) would otherwise recombine non-radiatively. Here we introduce a different device concept that exploits a blue fluorescent molecule in exchange for a phosphorescent dopant, in combination with green and red phosphor dopants, to yield high power efficiency and stable colour balance, while maintaining the potential for unity internal quantum efficiency. Two distinct modes of energy transfer within this device serve to channel nearly all of the triplet energy to the phosphorescent dopants, retaining the singlet energy exclusively on the blue fluorescent dopant. Additionally, eliminating the exchange energy loss to the blue fluorophore allows for roughly 20 per cent increased power efficiency compared to a fully phosphorescent device. Our device challenges incandescent sources by exhibiting total external quantum and power efficiencies that peak at 18.7 +/- 0.5 per cent and 37.6 +/- 0.6 lm W-1, respectively, decreasing to 18.4 +/- 0.5 per cent and 23.8 +/- 0.5 lm W-1 at a high luminance of 500 cd m(-2).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62889/1/nature04645.pd

    Majorana Neutrino: Chirality and Helicity

    Full text link
    We introduce the Majorana spinors in the momentum representation. They obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which frequently are confused in the literature) for Dirac and Majorana states.Comment: Misprints corrected. 19 pp., no figures. The talk given at the QTS7 Conference (Prague, Czech Republic, August 7-13, 2011

    Protoporphyrin IX enhancement by 5-aminolaevulinic acid peptide derivatives and the effect of RNA silencing on intracellular metabolism

    Get PDF
    Intracellular generation of the photosensitiser, protoporphyrin IX, from a series of dipeptide derivatives of the haem precursor, 5-aminolaevulinic acid (ALA), was investigated in transformed PAM212 murine keratinocytes, together with studies of their intracellular metabolism. Porphyrin production was substantially increased compared with equimolar ALA using N-acetyl terminated phenylalanyl, leucinyl and methionyl ALA methyl ester derivatives in the following order: Ac-L-phenylalanyl-ALA-Me, Ac-L-methionyl-ALA-Me and Ac-L-leucinyl-ALA-Me. The enhanced porphyrin production was in good correlation with improved photocytotoxicity, with no intrinsic dark toxicity apparent. However, phenylalanyl derivatives without the acetyl/acyl group at the N terminus induced significantly less porphyrin, and the replacement of the acetyl group by a benzyloxycarbonyl group resulted in no porphyrin production. Porphyrin production was reduced in the presence of class-specific protease inhibitors, namely serine protease inhibitors. Using siRNA knockdown of acylpeptide hydrolase (ACPH) protein expression, we showed the involvement of ACPH, a member of the prolyl oligopeptidase family of serine peptidases, in the hydrolytic cleavage of ALA from the peptide derivatives. In conclusion, ALA peptide derivatives are capable of delivering ALA efficiently to cells and enhancing porphyrin synthesis and photocytotoxicity; however, the N-terminus state, whether free or substituted, plays an important role in determining the biological efficacy of ALA peptide derivatives

    Dust Devil Sediment Transport: From Lab to Field to Global Impact

    Get PDF
    The impact of dust aerosols on the climate and environment of Earth and Mars is complex and forms a major area of research. A difficulty arises in estimating the contribution of small-scale dust devils to the total dust aerosol. This difficulty is due to uncertainties in the amount of dust lifted by individual dust devils, the frequency of dust devil occurrence, and the lack of statistical generality of individual experiments and observations. In this paper, we review results of observational, laboratory, and modeling studies and provide an overview of dust devil dust transport on various spatio-temporal scales as obtained with the different research approaches. Methods used for the investigation of dust devils on Earth and Mars vary. For example, while the use of imagery for the investigation of dust devil occurrence frequency is common practice for Mars, this is less so the case for Earth. Modeling approaches for Earth and Mars are similar in that they are based on the same underlying theory, but they are applied in different ways. Insights into the benefits and limitations of each approach suggest potential future research focuses, which can further reduce the uncertainty associated with dust devil dust entrainment. The potential impacts of dust devils on the climates of Earth and Mars are discussed on the basis of the presented research results
    • …
    corecore