175 research outputs found

    Understanding How Users Engage in an Immersive Virtual Reality-Based Live Event

    Get PDF
    Virtual Reality combined with social functioning is a lucrative business direction. Due to COVID-19, a need for better social interaction is identified urgently both in education institutes and the business sector. In this paper, we will show two business cases where social functioning is needed. The first one illustrates how the business sector can use Virtual Reality Social Platform (VRSP) in remote events. As a case study, we have selected Spinverse’s Summer Day organized in Microsoft AltspaceVR. The second business case, in turn, classifies requirements for Virtual Reality Social platforms. This has been studied in close cooperation with XR Presence. Results show that current technologies offer many features to be used, but at the same time, there are needs for further development. In addition, more studies are needed in technology acceptance, usability, user experience, and business impact

    Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    Get PDF
    International audienceThis paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC), inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III) by using a micro-orifice uniform deposit impactor (MOUDI). The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC) and monosaccharide anhydrides from the filter samples. During the measurements gravimetric mass in the MOUDI collections varied between 3.4 and 55.0 ?g m?3 and the WSOC concentration was between 0.3 and 7.4 ?g m?3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6) comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1?10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1?10 aerosol mass. Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas). Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs) and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that especially the oxidation products of biogenic VOCs in summer had a clear effect on WSOC concentrations

    Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion

    Get PDF
    MN/CA IX is a cell surface protein, strongly associated with several types of human carcinomas. It exerts activity of carbonic anhydrase and capacity of binding to cell surface receptors. In the present work, we used affinity purified MN/CA IX protein to demonstrate that the cells adhere to immobilized MN/CA IX and that the monoclonal antibody M75 abrogates cell attachment to MN/CA IX. Using synthetic oligopeptides, we identified M75 epitope and located it in the proteoglycan domain, which contains a sixfold tandem repeat of six amino acids GEEDLP. From phage display library of random heptapeptides we identified and chemically synthesized those which compete for the epitope with M75 and inhibit adhesion of cells to MN/CA IX. These heptapeptides might serve as lead compounds for drug design. © 2000 Cancer Research Campaig

    Chemical composition of atmospheric aerosols between Moscow and Vladivostok

    No full text
    International audienceThe TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere) was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC) concentrations in fine particles (PM2.5, aerodynamic diameter ?, NO3?, SO42?, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate) were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3?850 nm using a 10-min. time resolution. The continuous measurements were completed with 24-h. PM2.5 filter samples which were stored in a refrigerator and later analyzed in chemical laboratory. The analyses included mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan) and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn). The mass concentrations of PM2.5 varied in the range of 4.3?34.8 ?g m?3 with an average of 21.6 ?g m?3. Fine particle mass consisted mainly of BC (average 27.6%), SO42? (13.0%), NH4+ (4.1%), and NO3? (1.4%). One of the major constituents was obviously also organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to Vladivostok, primarily due to local anthropogenic sources. In the natural background area between 4000 and 7200 km distance from Moscow, observed concentrations were low, even though there were local particle sources, such as forest fires, that increased occasionally concentrations. The measurements indicated that during forest fire episodes, most of the aerosol mass consisted of organic particulate matter. Concentrations of biomass burning tracers levoglucosan, oxalate and potassium were elevated close to the forest fire areas observed by the MODIS satellite. The polluted air masses from Asia seem to have significant influences on the concentration levels of fine particles over south-eastern Russia

    Role of Secondary Organic Matter on Soot Particle Toxicity in Reconstituted Human Bronchial Epithelia Exposed at the Air-Liquid Interface.

    Get PDF
    Secondary organic matter (SOM) formed from gaseous precursors constitutes a major mass fraction of fine particulate matter. However, there is only limited evidence on its toxicological impact. In this study, air-liquid interface cultures of human bronchial epithelia were exposed to different series of fresh and aged soot particles generated by a miniCAST burner combined with a micro smog chamber (MSC). Soot cores with geometric mean mobility diameters of 30 and 90 nm were coated with increasing amounts of SOM, generated from the photo-oxidation of mesitylene and ozonolysis of α-pinene. At 24 h after exposure, the release of lactate dehydrogenase (LDH), indicating cell membrane damage, was measured and proteome analysis, i.e. the release of 102 cytokines and chemokines to assess the inflammatory response, was performed. The data indicate that the presence of the SOM coating and its bioavailability play an important role in cytotoxicity. In particular, LDH release increased with increasing SOM mass/total particle mass ratio, but only when SOM had condensed on the outer surface of the soot cores. Proteome analysis provided further evidence for substantial interference of coated particles with essential properties of the respiratory epithelium as a barrier as well as affecting cell remodeling and inflammatory activity

    Using a moving measurement platform for determining the chemical composition of atmospheric aerosols between Moscow and Vladivostok

    Get PDF
    The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere) was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC) concentrations in fine particles (PM<sub>2.5</sub>, aerodynamic diameter <2.5 μm) were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl<sup>−</sup>, NO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, oxalate and methane sulphonate) were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3–850 nm using a 10-min time resolution. The continuous measurements were completed with 24-h PM<sub>2.5</sub> filter samples stored in a refrigerator and analyzed later in a chemical laboratory. The analyses included the mass concentrations of PM<sub>2.5</sub>, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan) and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn). The mass concentrations of PM<sub>2.5</sub> varied in the range of 4.3–34.8 μg m<sup>−3</sup> with an average of 21.6 μg m<sup>−3</sup>. Fine particle mass consisted mainly of BC (average 27.6%), SO<sub>4</sub><sup>2−</sup> (13.0%), NH<sub>4</sub><sup>+</sup> (4.1%) and NO<sub>3</sub><sup>−</sup> (1.4%). One of the major constituents was obviously organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to Vladivostok, primarily due to local anthropogenic sources. In the natural background area between 4000 and 7200 km away from Moscow, observed concentrations were low, even though local particle sources, such as forest fires, occasionally increased concentrations. During the measured forest fire episodes, most of the aerosol mass appeared to consist of organic particulate matter. Concentrations of the biomass burning tracers levoglucosan, oxalate and potassium were elevated close to the forest fire areas observed by the MODIS satellite. The polluted air masses from Asia seem to have significant influences on the concentration levels of fine particles over south-eastern Russia

    Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colorectal mucosa

    Get PDF
    BACKGROUND: Carbonic anhydrase (CA) isozymes may have an important role in cancer development. Some isozymes control pH homeostasis in tumors that appears to modulate the behaviour of cancer cells. CA XIII is the newest member of the CA gene family. It is a cytosolic isozyme which is expressed in a number of normal tissues. The present study was designed to investigate CA XIII expression in prospectively collected colorectal tumor samples. METHODS: Both neoplastic and normal tissue specimens were obtained from the same patients. The analyses were performed using CA XIII-specific antibodies and an immunohistochemical staining method. For comparison, the tissue sections were immunostained for other cytosolic isozymes, CA I and II. RESULTS: The results indicated that the expression of CA XIII is down-regulated in tumor cells compared to the normal tissue. The lowest signal was detected in carcinoma samples. This pattern of expression was quite parallel for CA I and II. CONCLUSION: The down-regulation of cytosolic CA I, II and XIII in colorectal cancer may result from reduced levels of a common transcription factor or loss of closely linked CA1, CA2 and CA13 alleles on chromosome 8. Their possible role as tumor suppressors should be further evaluated

    High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS

    Get PDF
    A particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC) to enable high time-resolution measurements of water-soluble ions and water-soluble organic carbon (WSOC) by a single sampling and analytical set-up. The new high time-resolution measurement system, the PILS-TOC-IC, was able to provide essential chemical and physical information about fast changes in composition, concentrations and likely sources of the water-soluble fraction of atmospheric aerosol. The concentrations of major water-soluble ions and WSOC were measured by the PILS-TOC-IC system from 25 April to 28 May 2009. <br><br> The data of the PILS-TOC-IC setup was compared with the data from the High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) data measured from 25 April to 8 May 2009. The measured water-soluble particulate organic matter (WSPOM) concentration varied typically from 0.10 to 8.8 μg m<sup>−3</sup> (on average 1.5 μg m<sup>−3</sup>). The WSPOM contributed on average 51% to particulate organic matter (POM) measured with the AMS. The correlation between the data of all the online measurement devices (AMS, PILS-TOC-IC, semicontinuous EC/OC carbon analyzer and TEOM) was excellent. For sulfate, nitrate and ammonium the correlations between the PILS-TOC-IC and AMS were 0.93, 0.96 and 0.96, respectively. The correlation between WSPOM and POM was also strong (<I>r</I> = 0.88). The identified sources of WSPOM were long-range transported biomass burning and secondary organic aerosol (SOA) formation. WSPOM and oxalate produced in biomass burning were clearly correlated with carbon monoxide

    Characterization of trace metals on soot aerosol particles with the SP-AMS : detection and quantification

    Get PDF
    A method to detect and quantify mass concentrations of trace metals on soot particles by the Aerodyne soot-particle aerosol mass spectrometer (SP-AMS) was developed and evaluated in this study. The generation of monodisperse Regal black (RB) test particles with trace amounts of 13 different metals (Na, Al, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr and Ba) allowed for the determination of the relative ionization efficiency of each metal relative to black carbon (RIEmeas). The observed RIEmeas/RIEtheory values were larger than unity for Na, Rb, Ca, Sr and Ba due to thermal surface ionization (TSI) on the surface of the laser-heated RB particles. Values closer to unity were obtained for the transition metals Zn, Cu, V and Cr. Mn, Fe, and Ni presented the lowest RIEmeas/RIEtheory ratios and highest deviation from unity. The latter discrepancy is unexplained; however it may be related to problems with our calibration method and/or the formation of metal complexes that were not successfully quantified. The response of the metals to the laser power was investigated and the results indicated that a minimum pump laser current of 0.6 A was needed in order to vaporize the metals and the refractory black carbon (rBC). Isotopic patterns of metals were resolved from high-resolution mass spectra, and the mass-weighted size distributions for each individual metal ion were obtained using the high-resolution particle time-of-flight (HR-PToF) method. The RIEmeas values obtained in this study were applied to the data of emission measurements in a heavy-fuel-oil-fired heating station. Emission measurements revealed a large number of trace metals, including evidence for metal oxides and metallic salts, such as vanadium sulfate, calcium sulfate, iron sulfate and barium sulfate, which were identified in the SP-AMS high-resolution mass spectra. SP-AMS measurements of Ba, Fe, and V agreed with ICP-MS analyzed filter samples within a factor of 2 when emitted rBC mass loadings were elevated.Peer reviewe
    • …
    corecore