253 research outputs found

    Targeting Endoplasmic Reticulum and/or Mitochondrial Ca2+ Fluxes as Therapeutic Strategy for HCV Infection.

    Get PDF
    Chronic hepatitis C is characterized by metabolic disorders and by a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that can in the long term lead to liver cirrhosis and hepatocellular carcinoma. Several lines of evidence suggest that mitochondrial dysfunctions play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most javax.xml.bind.JAXBElement@5b15fc8d studies performed so far have shown that several of the hepatitis C virus (HCV) proteins also localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory and need to be confirmed in the context of productively replicating virus and physiologically relevant javax.xml.bind.JAXBElement@5e13485c and javax.xml.bind.JAXBElement@73aee95e model systems. In the past decade we have been proposing a temporal sequence of events in the HCV-infected cell whereby the primary alteration is localized at the mitochondria-associated ER membranes and causes release of Ca javax.xml.bind.JAXBElement@476155bf from the ER, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen and nitrogen species and a progressive metabolic adaptive response consisting in decreased oxidative phosphorylation and enhanced aerobic glycolysis and lipogenesis. Here we resume the major results provided by our group in the context of HCV-mediated alterations of the cellular inter-compartmental calcium flux homeostasis and present new evidence suggesting targeting of ER and/or mitochondrial calcium transporters as a novel therapeutic strategy

    Overview on Molecular Biomarkers for Laryngeal Cancer: Looking for New Answers to an Old Problem

    Get PDF
    Laryngeal squamous cell cancer (LSCC) accounts for almost 25–30% of all head and neck squamous cell cancers and is clustered according to the affected districts, as this determines distinct tendency to recur and metastasize. A major role for numerous genetic alterations in driving the onset and progression of this neoplasm is emerging. However, major efforts are still required for the identification of molecular markers useful for both early diagnosis and prognostic definition of LSCC that is still characterized by significant morbidity and mortality. Non-coding RNAs appear the most promising as they circulate in all the biological fluids allowing liquid biopsy determination, as well as due to their quick and characteristic modulation useful for non-invasive detection and monitoring of cancer. Other critical aspects are related to recent progress in circulating tumor cells and DNA detection, in metastatic status and chemo-refractoriness prediction, and in the functional interaction of LSCC with chronic inflammation and innate immunity. We review all these aspects taking into account the progress of the technologies in the field of next generation sequencing

    Poorly differentiated neuroendocrine larynx carcinoma: Clinical features and mirnas signature—a new goal for early diagnosis and therapy?

    Get PDF
    Laryngeal neuroendocrine carcinomas (LNECs) are rare and highly heterogeneous malignancies presenting a wide range of pathological and clinical manifestations. Herein, we retrospectively characterize ten patients diagnosticated with LNEC, five of which were defined as well‐moderately differentiated neuroendocrine carcinomas, and five that were defined as poorly differentiated neuroendocrine carcinomas, according to the latest WHO classification. Clinical features were analyzed and compared between the two subgroups together with a microRNA study which evidenced a peculiar signature likely related to poorly differentiated larynx neuroendocrine carcinomas. These findings may offer new useful insights for clinicians to improve diagnosis efficiency, therapy response, and patients’ outcome for this aggressive neoplasm

    Structure and mechanism of human DNA polymerase η

    Get PDF
    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Pol eta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol eta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol eta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol eta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol eta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol eta in replicating through D loop and DNA fragile sites

    po 246 nandrolone affects cell growth and differentiation in hepatoma cells

    Get PDF
    Introduction Hepatocellular carcinoma (HCC) represents the sixth leading cancer and the third most common cause of death from cancer. Many different aetiological factors are involved in the development of HCC, which may be modulated by both estrogens and androgens hormones during its initiation, progression and metastasis. The misuse of anabolic androgenic steroids (AAS) is associated with serious adverse effects to the liver, including cellular adenomas and adenocarcinomas, and is considered a factor risk of developing hepatic sex hormone related tumours. The purpose of this study was to investigate the role of Nandrolone, one of the most commonly used AAS, in regulating proliferation and differentiation of HCC. Material and methods Human HCC cell line HepG2 was treated with Nandrolone, a synthetic androgen ligand, for 48 hs and its viability and proliferation was assessed by MTS and cell cycle analysis, respectively. The expression of protein involved in cell cycle regulation and differentiation markers were analysed by western blot and real time PCR. Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were performed using Seahorse XF96 extracellular flux analyzer. Respiratory chain complex activities were assayed spectrophotometrically. Stemness surface markers expression was detected by FACSCalibur flow cytometer. Results and discussions Nandrolone treatment caused cell growth inhibition associated to a downregulation of cyclin D1 and an upregulation of the cyclin-dependent kinase inhibitors p21Waf1/Cip1 leading to cell cycle arrest in the G2 phase. Moreover, a significant overall impairment of mitochondrial functions, resulting in a reduced OCR and impairment of OXPHOS complexes activities were also observed, thus suggesting a role in the control of the metabolic reprogramming. Finally, a significant increase of the stemness markers was detected following Nandrolone treatment, also confirmed in additional human stem cell types and in an in vivo mouse model. Conclusion Nandrolone shows a strong anti-proliferative effect in differentiated tumour cells, promoting cancer cells stemness through cellular metabolic reprogramming. These results could have important public health implications in order to improve the primary prevention such as revising altered lifestyles, like AAS abuse

    Definition of miRNA Signatures of Nodal Metastasis in LCa: miR-449a Targets Notch Genes and Suppresses Cell Migration and Invasion

    Get PDF
    The need to identify molecular markers for early detection of laryngeal cancer prompted Kawasaki et al. to define a miRNA signature of tumor transformation and spreading. They showed the diagnostic and predictive potential of miR-133b and miR-449a, respectively, and demonstrated miR-449a-mediated suppression of the metastatic factors Notch1 and Notch2

    Further insights into the tRNA modification process controlled by proteins MnmE and GidA of Escherichia coli

    Get PDF
    In Escherichia coli, proteins GidA and MnmE are involved in the addition of the carboxymethylaminomethyl (cmnm) group onto uridine 34 (U34) of tRNAs decoding two-family box triplets. However, their precise role in the modification reaction remains undetermined. Here, we show that GidA is an FAD-binding protein and that mutagenesis of the N-terminal dinucleotide-binding motif of GidA, impairs capability of this protein to bind FAD and modify tRNA, resulting in defective cell growth. Thus, GidA may catalyse an FAD-dependent reaction that is required for production of cmnmU34. We also show that GidA and MnmE have identical cell location and that both proteins physically interact. Gel filtration and native PAGE experiments indicate that GidA, like MnmE, dimerizes and that GidA and MnmE directly assemble in an α2β2 heterotetrameric complex. Interestingly, high-performance liquid chromatography (HPLC) analysis shows that identical levels of the same undermodified form of U34 are present in tRNA hydrolysates from loss-of-function gidA and mnmE mutants. Moreover, these mutants exhibit similar phenotypic traits. Altogether, these results do not support previous proposals that activity of MnmE precedes that of GidA; rather, our data suggest that MnmE and GidA form a functional complex in which both proteins are interdependent

    Deciphering the Catalytic Machinery in 30S Ribosome Assembly GTPase YqeH

    Get PDF
    YqeH, a circularly permuted GTPase (cpGTPase), which is conserved across bacteria and eukaryotes including humans is important for the maturation of small (30S) ribosomal subunit in Bacillus subtilis. Recently, we have shown that it binds 30S in a GTP/GDP dependent fashion. However, the catalytic machinery employed to hydrolyze GTP is not recognized for any of the cpGTPases, including YqeH. This is because they possess a hydrophobic substitution in place of a catalytic glutamine (present in Ras-like GTPases). Such GTPases were categorized as HAS-GTPases and were proposed to follow a catalytic mechanism, different from the Ras-like proteins.MnmE, another HAS-GTPase, but not circularly permuted, utilizes a potassium ion and water mediated interactions to drive GTP hydrolysis. Though the G-domain of MnmE and YqeH share only approximately 25% sequence identity, the conservation of characteristic sequence motifs between them prompted us to probe GTP hydrolysis machinery in YqeH, by employing homology modeling in conjunction with biochemical experiments. Here, we show that YqeH too, uses a potassium ion to drive GTP hydrolysis and stabilize the transition state. However, unlike MnmE, it does not dimerize in the transition state, suggesting alternative ways to stabilize switches I and II. Furthermore, we identify a potential catalytic residue in Asp-57, whose recognition, in the absence of structural information, was non-trivial due to the circular permutation in YqeH. Interestingly, when compared with MnmE, helix alpha2 that presents Asp-57 is relocated towards the N-terminus in YqeH. An analysis of the YqeH homology model, suggests that despite such relocation, Asp-57 may facilitate water mediated catalysis, similarly as the catalytic Glu-282 of MnmE. Indeed, an abolished catalysis by D57I mutant supports this inference.An uncommon means to achieve GTP hydrolysis utilizing a K(+) ion has so far been demonstrated only for MnmE. Here, we show that YqeH also utilizes a similar mechanism. While the catalytic machinery is similar in both, mechanistic differences may arise based on the way they are deployed. It appears that K(+) driven mechanism emerges as an alternative theme to stabilize the transition state and hydrolyze GTP in a subset of GTPases, such as the HAS-GTPases

    P-hydroxyphenylpyruvate, an intermediate of the Phe/Tyr catabolism, improves mitochondrial oxidative metabolism under stressing conditions and prolongs survival in rats subjected to profound hemorrhagic shock

    Get PDF
    The aim of this study was to test the effect of a small volume administration of p-hydroxyphenylpyruvate (pHPP) in a rat model of profound hemorrhagic shock and to assess a possible metabolic mechanism of action of the compound. The results obtained show that hemorrhaged rats treated with 2-4% of the estimated blood volume of pHPP survived significantly longer (p<0.001) than rats treated with vehicle. In vitro analysis on cultured EA.hy 926 cells demonstrated that pHPP improved cell growth rate and promoted cell survival under stressing conditions. Moreover, pHPP stimulated mitochondria-related respiration under ATP-synthesizing conditions and exhibited antioxidant activity toward mitochondria-generated reactive oxygen species. The compound effects reported in the in vitro and in vivo analyses were obtained in the same millimolar concentration range. These data disclose pHPP as an efficient energetic substrates-supplier to the mitochondrial respiratory chain as well as an antioxidant supporting the view that the compound warrants further evaluation as a therapeutic agent. © 2014 Cotoia et al
    corecore