41,752 research outputs found

    A preliminary look at control augmented dynamic response of structures

    Get PDF
    The augmentation of structural characteristics, mass, damping, and stiffness through the use of control theory in lieu of structural redesign or augmentation was reported. The standard single-degree-of-freedom system was followed by a treatment of the same system using control augmentation. The system was extended to elastic structures using single and multisensor approaches and concludes with a brief discussion of potential application to large orbiting space structures

    Dirac type operators for spin manifolds associated to congruence subgroups of generalized modular groups

    Get PDF
    Fundamental solutions of Dirac type operators are introduced for a class of conformally. at spin manifolds. This class consists of manifolds obtained by factoring out the upper half-space of R-n by congruence subgroups of generalized modular groups. Basic properties of these fundamental solutions are presented together with associated Eisenstein and Poincare type series

    Impact of Home Field Advantage: Analyzed Across Three Professional Sports

    Full text link
    We examined the impact of home-field advantage in the NFL, NBA, and MLB. We defined home-field advantage as winning more than 50% of the home games. Additionally, we took into consideration how season length could act as a moderator and influence the impact of home-field advantage. We collected data from the 2015 NBA and MLB seasons and the 2015 and 2016 NFL seasons to determine statistical significance. In total, we got data from 4,141 games to analyze. We found that there is statistical significance that the home team has a better chance of winning than the away team across the NFL, NBA, and MLB. We also found that season length has a significant impact on home team winning percentage

    Quantifying the Biases of Spectroscopically Selected Gravitational Lenses

    Full text link
    Spectroscopic selection has been the most productive technique for the selection of galaxy-scale strong gravitational lens systems with known redshifts. Statistically significant samples of strong lenses provide a powerful method for measuring the mass-density parameters of the lensing population, but results can only be generalized to the parent population if the lensing selection biases are sufficiently understood. We perform controlled Monte Carlo simulations of spectroscopic lens surveys in order to quantify the bias of lenses relative to parent galaxies in velocity dispersion, mass axis ratio, and mass density profile. For parameters typical of the SLACS and BELLS surveys, we find: (1) no significant mass axis ratio detection bias of lenses relative to parent galaxies; (2) a very small detection bias toward shallow mass density profiles, which is likely negligible compared to other sources of uncertainty in this parameter; (3) a detection bias towards smaller Einstein radius for systems drawn from parent populations with group- and cluster-scale lensing masses; and (4) a lens-modeling bias towards larger velocity dispersions for systems drawn from parent samples with sub-arcsecond mean Einstein radii. This last finding indicates that the incorporation of velocity-dispersion upper limits of \textit{non-lenses} is an important ingredient for unbiased analyses of spectroscopically selected lens samples. In general we find that the completeness of spectroscopic lens surveys in the plane of Einstein radius and mass-density profile power-law index is quite uniform, up to a sharp drop in the region of large Einstein radius and steep mass density profile, and hence that such surveys are ideally suited to the study of massive field galaxies.Comment: Accepted for publication in Astrophys. J., June 7, 2012. In press. 9 pages, 5 figures, 1 tabl

    Estimates of body sizes at maturation and at sex change, and the spawning seasonality and sex ratio of the endemic Hawaiian grouper (Hyporthodus quernus, F. Epinephelidae)

    Get PDF
    A case study of the reproductive biology of the endemic Hawaiian grouper or hapu’upu’u (Hyporthodus quernus) is presented as a model for comprehensive future studies of economically important epinephelid groupers. Specimens were collected throughout multiple years (1978–81, 1992–93, and 2005–08) from most reefs and banks of the Northwestern Hawaiian Islands. The absence of small males, presence of atretic oocytes and brown bodies in testes of mature males, and both developed ovarian and testicular tissues in the gonads of five transitional fish provided evidence of protogynous hermaphroditism. No small mature males were collected, indicating that Hawaiian grouper are monandrous (all males are sex-changed females). Complementary microscopic criteria also were used to assign reproductive stage and estimate median body sizes (L50) at female sexual maturity and at adult sex change from female to male. The L50 at maturation and at sex change was 580 ±8 (95% confidence interval [CI]) mm total length (TL) and 895 ±20 mm TL, respectively. The adult sex ratio was strongly female biased (6:1). Spawning seasonality was described by using gonadosomatic indices. Females began ripening in the fall and remained ripe through April. A February–June main spawning period that followed peak ripening was deduced from the proportion of females whose ovaries contained hydrated oocytes, postovulatory follicles, or both. Testes weights were not affected by season; average testes weight was only about 0.2% of body weight—an order of magnitude smaller than that for ovaries that peaked at 1–3% of body weight. The species’ reproductive life history is discussed in relation to its management

    A Generalized Spatial Measure for Resilience of Microbial Systems

    Get PDF
    The emergent property of resilience is the ability of a system to return to an original state after a disturbance. Resilience may be used as an early warning system for significant or irreversible community transition; that is, a community with diminishing or low resilience may be close to catastrophic shift in function or an irreversible collapse. Typically, resilience is quantified using recovery time, which may be difficult or impossible to directly measure in microbial systems. A recent study in the literature showed that under certain conditions, a set of spatial-based metrics termed recovery length, can be correlated to recovery time, and thus may be a reasonable alternative measure of resilience. However, this spatial metric of resilience is limited to use for step-change perturbations. Building upon the concept of recovery length, we propose a more general form of the spatial metric of resilience that can be applied to any shape of perturbation profiles (for example, either sharp or smooth gradients). We termed this new spatial measure “perturbation-adjusted spatial metric of resilience” (PASMORE). We demonstrate the applicability of the proposed metric using a mathematical model of a microbial mat
    • …
    corecore