2,377 research outputs found

    Connecting up strategy: are senior strategy directors a missing link?

    Get PDF
    With companies being exhorted to become more strategically agile and internally connected, this article examines the role of the Senior Strategy Director, the executive tasked specifically with internal strategy. In particular, it explores what they do, what specific capabilities they deploy to enable effective contribution to the company, and in what ways they facilitate the connectedness of strategy. An analysis of multiple interviews over time with Senior Strategy Directors of large companies shows the vital and challenging role these executives play in both shaping, connecting up, and executing strategy. This article identifies the particular capabilities necessary for Senior Strategy Directors to perform their role and shows how it all depends upon their skilful deployment. These findings have significant implications for understanding unfolding micro-processes of strategy in large organizations, for assumptions about the skills and capabilities necessary to be an effective Senior Strategy Director, and for business schools in terms of the content and style of strategy courses they provide

    Random Walks on a Fluctuating Lattice: A Renormalization Group Approach Applied in One Dimension

    Full text link
    We study the problem of a random walk on a lattice in which bonds connecting nearest neighbor sites open and close randomly in time, a situation often encountered in fluctuating media. We present a simple renormalization group technique to solve for the effective diffusive behavior at long times. For one-dimensional lattices we obtain better quantitative agreement with simulation data than earlier effective medium results. Our technique works in principle in any dimension, although the amount of computation required rises with dimensionality of the lattice.Comment: PostScript file including 2 figures, total 15 pages, 8 other figures obtainable by mail from D.L. Stei

    Heat Conduction and Entropy Production in a One-Dimensional Hard-Particle Gas

    Get PDF
    We present large scale simulations for a one-dimensional chain of hard-point particles with alternating masses. We correct several claims in the recent literature based on much smaller simulations. Both for boundary conditions with two heat baths at different temperatures at both ends and from heat current autocorrelations in equilibrium we find heat conductivities kappa to diverge with the number N of particles. These depended very strongly on the mass ratios, and extrapolation to N -> infty resp. t -> infty is difficult due to very large finite-size and finite-time corrections. Nevertheless, our data seem compatible with a universal power law kappa ~ N^alpha with alpha approx 0.33. This suggests a relation to the Kardar-Parisi-Zhang model. We finally show that the hard-point gas with periodic boundary conditions is not chaotic in the usual sense and discuss why the system, when kept out of equilibrium, leads nevertheless to energy dissipation and entropy production.Comment: 4 pages (incl. 5 figures), RevTe

    Dynamics and Efficiency of Brownian Rotors

    Full text link
    Brownian rotors play an important role in biological systems and in future nano-technological applications. However the mechanisms determining their dynamics, efficiency and performance remain to be characterized. Here the F0 portion of the F-ATP synthase is considered as a paradigm of a Brownian rotor. In a generic analytical model we analyze the stochastic rotation of F0-like motors as a function of the driving free energy difference and of the free energy profile the rotor is subjected to. The latter is composed of the rotor interaction with its surroundings, of the free energy of chemical transitions, and of the workload. The dynamics and mechanical efficiency of the rotor depends on the magnitude of its stochastic motion driven by the free energy energy difference and its rectification on the reaction-diffusion path. We analyze which free energy profiles provide maximum flow and how their arrangement on the underlying reaction-diffusion path affects rectification and -- by this -- the efficiency.Comment: 22 pages, 11 figures, pdflatex, JCP in pres

    Langevin Trajectories between Fixed Concentrations

    Full text link
    We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations connected by a channel, e.g. a protein channel of a biological membrane. The steady state influx and efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the two baths is replicated by termination of outgoing trajectories and injection according to a residual phase space density. We present a simulation scheme that maintains averaged fixed concentrations without creating spurious boundary layers, consistent with the assumed physics

    Chromosomes of the Asian flying squirrel Petaurista petaurista (Pallas)

    Full text link
    Хромосомы были изучаны летаги Petaurista petaurista из Ингии; диплоидное число (2 n ) было 38 и число аутосом плечи (NF) было 72. Родство между хромосомами рода Petaurista и рода Glaucomys подсемейства Petauristinae, и Между Petaurista и Sciurus (подсемейство Sciurinae) было описывано. Находка, что диплондное число Petauristia было 38, оказывала понятие, что родовые Sciuridae обладали 2 n =38–40.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42484/1/18_2005_Article_BF02286944.pd

    Top Predators Negate the Effect of Mesopredators on Prey Physiology

    Get PDF
    Predation theory and empirical evidence suggest that top predators benefit the survival of resource prey through the suppression of mesopredators. However, whether such behavioural suppression can also affect the physiology of resource prey has yet to be examined. Using a three‐tier reef fish food web and intermittent‐flow respirometry, our study examined changes in the metabolic rate of resource prey exposed to combinations of mesopredator and top predator cues. Under experimental conditions, the mesopredator (dottyback, Pseudochromis fuscus ) continuously foraged and attacked resource prey (juveniles of the damselfish Pomacentrus amboinensis ) triggering an increase in prey O2 uptake by 38 ± 12·9% (mean ± SE). The visual stimulus of a top predator (coral trout, Plectropomus leopardus ) restricted the foraging activity of the mesopredator, indirectly allowing resource prey to minimize stress and maintain routine O2 uptake. Although not as strong as the effect of the top predator, the sight of a large non‐predator species (thicklip wrasse, Hemigymnus melapterus ) also reduced the impact of the mesopredator on prey metabolic rate. We conclude that lower trophic‐level species can benefit physiologically from the presence of top predators through the behavioural suppression that top predators impose on mesopredators. By minimizing the energy spent on mesopredator avoidance and the associated stress response to mesopredator attacks, prey may be able to invest more energy in foraging and growth, highlighting the importance of the indirect, non‐consumptive effects of top predators in marine food webs

    Monte Carlo Methods for Rough Free Energy Landscapes: Population Annealing and Parallel Tempering

    Full text link
    Parallel tempering and population annealing are both effective methods for simulating equilibrium systems with rough free energy landscapes. Parallel tempering, also known as replica exchange Monte Carlo, is a Markov chain Monte Carlo method while population annealing is a sequential Monte Carlo method. Both methods overcome the exponential slowing associated with high free energy barriers. The convergence properties and efficiency of the two methods are compared. For large systems, population annealing initially converges to equilibrium more rapidly than parallel tempering for the same amount of computational work. However, parallel tempering converges exponentially and population annealing inversely in the computational work so that ultimately parallel tempering approaches equilibrium more rapidly than population annealing.Comment: 10 pages, 3 figure

    Development of a Molecular Signature to Monitor Pharmacodynamic Responses Mediated by In Vivo Administration of Glucocorticoids

    Get PDF
    © 2018 American College of Rheumatology. Objective: To develop an objective, readily measurable pharmacodynamic biomarker of glucocorticoid (GC) activity. Methods: Genes modulated by prednisolone were identified from in vitro studies using peripheral blood mononuclear cells from normal healthy volunteers. Using the criteria of a \u3e2-fold change relative to vehicle controls and an adjusted P value cutoff of less than 0.05, 64 up-regulated and 18 down-regulated genes were identified. A composite score of the up-regulated genes was generated using a single-sample gene set enrichment analysis algorithm. Results: GC gene signature expression was significantly elevated in peripheral blood leukocytes from normal healthy volunteers following oral administration of prednisolone. Expression of the signature increased in a dose-dependent manner, peaked at 4 hours postadministration, and returned to baseline levels by 48 hours after dosing. Lower expression was detected in normal healthy volunteers who received a partial GC receptor agonist, which is consistent with the reduced transactivation potential of this compound. In cohorts of patients with systemic lupus erythematosus and patients with rheumatoid arthritis, expression of the GC signature was negatively correlated with the percentages of peripheral blood lymphocytes and positively correlated with peripheral blood neutrophil counts, which is consistent with the known biology of the GC receptor. Expression of the signature largely agreed with reported GC use in these populations, although there was significant interpatient variability within the dose cohorts. Conclusion: The GC gene signature identified in this study represents a pharmacodynamic marker of GC exposure

    The mitogen-activated protein kinome from Anopheles gambiae: identification, phylogeny and functional characterization of the ERK, JNK and p38 MAP kinases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae </it>is the primary mosquito vector of human malaria parasites in sub-Saharan Africa. To date, three innate immune signaling pathways, including the nuclear factor (NF)-kappaB-dependent Toll and immune deficient (IMD) pathways and the Janus kinase/signal transducers and activators of transcription (Jak-STAT) pathway, have been extensively characterized in <it>An. gambiae</it>. However, in addition to NF-kappaB-dependent signaling, three mitogen-activated protein kinase (MAPK) pathways regulated by JNK, ERK and p38 MAPK are critical mediators of innate immunity in other invertebrates and in mammals. Our understanding of the roles of the MAPK signaling cascades in anopheline innate immunity is limited, so identification of the encoded complement of these proteins, their upstream activators, and phosphorylation profiles in response to relevant immune signals was warranted.</p> <p>Results</p> <p>In this study, we present the orthologs and phylogeny of 17 <it>An. gambiae </it>MAPKs, two of which were previously unknown and two others that were incompletely annotated. We also provide detailed temporal activation profiles for ERK, JNK, and p38 MAPK in <it>An. gambiae </it>cells <it>in vitro </it>to immune signals that are relevant to malaria parasite infection (human insulin, human transforming growth factor-beta1, hydrogen peroxide) and to bacterial lipopolysaccharide. These activation profiles and possible upstream regulatory pathways are interpreted in light of known MAPK signaling cascades.</p> <p>Conclusions</p> <p>The establishment of a MAPK "road map" based on the most advanced mosquito genome annotation can accelerate our understanding of host-pathogen interactions and broader physiology of <it>An. gambiae </it>and other mosquito species. Further, future efforts to develop predictive models of anopheline cell signaling responses, based on iterative construction and refinement of data-based and literature-based knowledge of the MAP kinase cascades and other networked pathways will facilitate identification of the "master signaling regulators" in biomedically important mosquito species.</p
    corecore