1,692 research outputs found

    Microwave spectroscopy of a carbon nanotube charge qubit

    Get PDF
    Carbon nanotube quantum dots allow accurate control of electron charge, spin and valley degrees of freedom in a material which is atomically perfect and can be grown isotopically pure. These properties underlie the unique potential of carbon nanotubes for quantum information processing, but developing nanotube charge, spin, or spin-valley qubits requires efficient readout techniques as well as understanding and extending quantum coherence in these devices. Here, we report on microwave spectroscopy of a carbon nanotube charge qubit in which quantum information is encoded in the spatial position of an electron. We combine radio-frequency reflectometry measurements of the quantum capacitance of the device with microwave manipulation to drive transitions between the qubit states. This approach simplifies charge-state readout and allows us to operate the device at an optimal point where the qubit is first-order insensitive to charge noise. From these measurements, we are able to quantify the degree of charge noise experienced by the qubit and obtain an inhomogeneous charge coherence of 5 ns. We use a chopped microwave signal whose duty-cycle period is varied to measure the decay of the qubit states, yielding a charge relaxation time of 48 ns

    Macroscopic modelling of the surface tension of polymer-surfactant systems

    Get PDF
    Polymer-surfactant mixtures are increasingly being used in a wide range of applications. Weakly-interacting systems, such as SDS/PEO and SDS/PVP, comprise ionic surfactants and neutral polymers, while strongly-interacting systems, such as SDS/POLYDMDAAC and C12TAB/NaPSS, comprise ionic surfactants and oppositely charged ionic polymers. The complex nature of interactions in the mixtures leads to interesting and surprising surface tension profiles as the concentrations of polymer and surfactant are varied. The purpose of our research has been to develop a model to explain these surface tension profiles and to understand how they relate to the formation of different complexes in the bulk solution. In this paper we shouw how an existing model based on the law of mass action can be extended to model the surface tension of weakly-interacting systems, and we also extend it further to produce a model for the surface tension of strongly interacting systems. Applying the model to a variety of strongly-interacting systems gives remarkable agreement with the experimental results. The model provides a sound theoretical basis for comparing and contrasting the behaviour of different systems and greatly enhances our understanding of the features observed

    Flexibility in the receptor-binding domain of the enzymatic colicin E9 is required for toxicity against Escherichia coli cells

    Get PDF
    The events that occur after the binding of the enzymatic E colicins to Escherichia coli BtuB receptors that lead to translocation of the cytotoxic domain into the periplasmic space and, ultimately, cell killing are poorly understood. It has been suggested that unfolding of the coiled-coil Mull receptor binding domain of the E colicins may be an essential step that leads to the loss of immunity protein from the colicin and immunity protein complex and then triggers the events of translocation. We introduced pairs of cysteine mutations into the receptor binding domain of colicin E9 (ColE9) that resulted in the formation of a disulfide bond located near the middle or the top of the R domain. After dithiothreitol reduction, the ColE9 protein with the mutations L359C and F412C (ColE9 L359C-F412C) and the ColE9 protein with the mutations Y324C and L447C (ColE9 Y324C-L447C) were slightly less active than equivalent concentrations of ColE9. On oxidation with diamide, no significant biological activity was seen with the ColE9 L359C-F412C and the ColE9 Y324C-L447C mutant proteins; however diamide had no effect on the activity of ColE9. The presence of a disulfide bond was confirmed in both of the oxidized, mutant proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The loss of biological activity of the disulfide-containing mutant proteins was not due to an indirect effect on the properties of the translocation or DNase domains of the mutant colicins. The data are consistent with a requirement for the flexibility of the coiled-coil R domain after binding to BtuB

    Eucalyptus Oils

    Get PDF
    The mention of Eucalyptus oil recalls immediately its use for a cough or cold by placing three drops of the oil on a piece of sugar and the swallowing of the confection. A better method of treatment is by inhaling the oil from the surface of water which has been heated to boiling point. The efficacy of the oil, especially for the treatment of influenza and severe cold in the head is considerably enhanced by the addition of a few crystals of menthol to the oil. These particular uses are very well-known, but many other and, in my opinion, more important uses are not so well-known. There is no better substance for the removal of grease stains and tar from clothes, even the most delicately coloured fabrics, than certain grades of Eucalyptus Oil which will be described later. Apart from their use as clothes cleaners, Eucalyptus Oils are very useful for the renovation of tapestry, car and furniture upholstery

    Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies

    Get PDF
    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific ‘learning’ paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and Body Mass Index (-0.002 kg/m2/year, 95%CI -0.009 to 0.005). Meta-analysis of short- term randomized controlled trials (RCTs, 129 comparisons) showed reduced total EI for LES- versus sugar-sweetened food or beverage consumption before an ad libitum meal (-94 kcal, 95%CI -122 to -66), with no difference versus water (-2 kcal, 95%CI -30 to 26). This was consistent with EI results from sustained intervention RCTs (10 comparisons). Meta-analysis of sustained intervention RCTs (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; -1.35 kg, 95%CI –2.28 to - 0.42), and a similar relative reduction in BW versus water (three comparisons; -1.24 kg, 95%CI –2.22 to -0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human RCTs indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (e.g., water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also when compared with water

    The Chemistry of Eucalyptus Oils

    Get PDF
    In the last issue of Environment I gave a brief popular description of the commercially valuable Eucalypts and the important essential oils obtained from their leaves and terminal branchlets. I also discussed how these oils could he obtained and the many and varied uses to which they conld be applied. The valuable uses and properties of Eucalyptus Oils-a typically Australian product have not been appreciated to the extent they merit, probably due to lack of publicity. It is confidently anticipated that considerable interest will have been aroused by the information made available in the June issue of Environment. The Editor suggested the possibility of some interested readers developing a desire for additional information about the chemistry of Eucalyptus Oils. The purpose of this article, therefore, is to give those readers thirsty for increased knowledge some data about some of the many interesting substances which have been isolated from Eucalyptus Oils. The information will be of a more advanced nature, but I shall endeavour to describe the chemistry of these interesting substances in a simple and popular manner. The following table describes the species which yield the present day Eucalyptus Oils of commerce and the districts in which they occur in abundance. In the first article, I selected a range of these species and briefly described their habitat and the nature of the essential oils obtained from them. The list now furnished, however, is a complete one

    The kinetics of surfactant desorption at the air–solution interface

    Get PDF
    The kinetics of desorption of the anionic surfactant sodium dodecylbenzene sulfonate at the air–solution interface have been studied using neutron reflectivity (NR). The experimental arrangement incorporates a novel flow cell in which the subphase can be exchanged (diluted) using a laminar flow whilst the surface region remains unaltered. The kinetics of the desorption is relatively slow and occurs over many tens of minutes compared with the dilution timescale of approximately 10–30 minutes. A detailed mathematical model, in which the rate of the desorption is determined by transport through a near-surface diffusion layer into a diluted bulk solution below, is developed and provides a good description of the timedependent adsorption data.\ud \ud A key parameter of the model is the ratio of the depth of the diffusion layer, Hc , to the depth of the fluid, Hf, and we find that this is related to the reduced Péclet number, Pe*, for the system, via Hc/Hf, = C/Pe* 1/ 2 . Although from a highly idealised experimental arrangement, the results provide an important insight into the ‘rinse mechanism’, which is applicable to a wide variety of domestic and industrial circumstances

    Inferring the perturbation time from biological time course data.

    Get PDF
    MOTIVATION: Time course data are often used to study the changes to a biological process after perturbation. Statistical methods have been developed to determine whether such a perturbation induces changes over time, e.g. comparing a perturbed and unperturbed time course dataset to uncover differences. However, existing methods do not provide a principled statistical approach to identify the specific time when the two time course datasets first begin to diverge after a perturbation; we call this the perturbation time. Estimation of the perturbation time for different variables in a biological process allows us to identify the sequence of events following a perturbation and therefore provides valuable insights into likely causal relationships. RESULTS: We propose a Bayesian method to infer the perturbation time given time course data from a wild-type and perturbed system. We use a non-parametric approach based on Gaussian Process regression. We derive a probabilistic model of noise-corrupted and replicated time course data coming from the same profile before the perturbation time and diverging after the perturbation time. The likelihood function can be worked out exactly for this model and the posterior distribution of the perturbation time is obtained by a simple histogram approach, without recourse to complex approximate inference algorithms. We validate the method on simulated data and apply it to study the transcriptional change occurring in Arabidopsis following inoculation with Pseudomonas syringae pv. tomato DC3000 versus the disarmed strain DC3000hrpA AVAILABILITY AND IMPLEMENTATION: : An R package, DEtime, implementing the method is available at https://github.com/ManchesterBioinference/DEtime along with the data and code required to reproduce all the results. CONTACT: [email protected] or [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Convergence and Perturbation Resilience of Dynamic String-Averaging Projection Methods

    Full text link
    We consider the convex feasibility problem (CFP) in Hilbert space and concentrate on the study of string-averaging projection (SAP) methods for the CFP, analyzing their convergence and their perturbation resilience. In the past, SAP methods were formulated with a single predetermined set of strings and a single predetermined set of weights. Here we extend the scope of the family of SAP methods to allow iteration-index-dependent variable strings and weights and term such methods dynamic string-averaging projection (DSAP) methods. The bounded perturbation resilience of DSAP methods is relevant and important for their possible use in the framework of the recently developed superiorization heuristic methodology for constrained minimization problems.Comment: Computational Optimization and Applications, accepted for publicatio
    • …
    corecore