1,248 research outputs found

    Perturbative renormalisation of quark bilinear operators for overlap fermions with and without stout links and improved gauge action

    Get PDF
    We calculate lattice renormalisation constants of local and one-link quark operators for overlap fermions and improved gauge actions in one-loop perturbation theory. For the local operators we stout smear the SU(3) links in the fermionic action. Using the popular tadpole improved L\"uscher-Weisz actions at β=8.45\beta=8.45 and β=8.0\beta=8.0 we present numerical values for the Z factors in the MSˉ\bar{MS} scheme (partly as function of the stout smearing strength). We compare various levels of mean field (tadpole) improvement which have been applied to our results.Comment: 7 page

    Non-perturbative renormalisation for overlap fermions

    Get PDF
    Using non-perturbative techniques we have found the renormalisation factor, Z, in the RI-MOM scheme for quark bilinear operators in quenched QCD. We worked with overlap fermions using the Luescher-Weisz gauge action. Our calculation was performed at beta=8.45 at a lattice spacing of 1/a=2.1 GeV using a value of rho=1.4. Our results show good agreement between the vector and the axial vector in the zero mass limit. This shows that overlap fermions have good chiral properties. To attempt to improve the discretisation errors in our results we subtracted the O(a^2) terms in one-loop lattice perturbation theory from the Monte Carlo Green functions. In particular we paid attention to the operators for the observable . We found a value for the renormalisation constants Z^msbar_(v_2b) and Z^msbar_(v_2a) just less than 1.9 at mu=1/a=2.1 GeV.Comment: 6 pages, 3 figures, uses PoS style, poster presented at Lattice 2005 (Chiral Fermions), to be published in Proceedings of Scienc

    Accelerating Hasenbusch's acceleration of Hybrid Monte Carlo

    Get PDF
    Hasenbusch has proposed splitting the pseudo-fermionic action into two parts, in order to speed-up Hybrid Monte Carlo simulations of QCD. We have tested a different splitting, also using clover-improved Wilson fermions. An additional speed-up between 5 and 20% over the original proposal was achieved in production runs.Comment: Poster presented by H. Stueben at Lattice2003, meta-data correcte

    A Biophysical Model of the Male Urethra: comparing viscoelastic properties of PolyVinyl Alcohol urethras to male pig urethras.

    Get PDF
    Aims: We aim at developing a non-invasive method for grading and diagnosing urinary bladder outlet obstruction, based on noise recording with a perineal contact microphone during voiding. We found that the noise production during voiding depends amongst others on the viscoelastic properties of the urethral wall. To further test our method, we need a realistic biophysical model of the male urethra. Methods: We made various model urethras with different viscoelastic properties from a 10% aqueous solution of PolyVinyl Alcohol cryogel. We measured the viscoelastic properties of each model and compared them to those of the male pig urethra. The male pig urethra was used, as it is physiologically comparable to the human male urethra. The viscoelastic properties of both model and pig urethras were measured by applying strain to the urethral wall in a stepwise manner and recording the pressure response. We fitted the step-response of a mechanical model to this pressure response and derived the viscoelastic properties from the coefficients of this response. Results: A uniform model urethra that was freeze-thawed three times, with a Y-shaped flow channel was found to best represent the male pig urethra. Conclusion: We consider the three times freeze-thawed model urethra with a Y-shaped flow channel the best model of the human male urethra. And we therefore use this model urethra for studying the relation between noise recording during urine flow and the degree of bladder outlet obstruction.RePub containts a preprint of the article. See http://www.interscience.Wiley.co

    Determination of the strange nucleon form factors

    Get PDF
    The strange contribution to the electric and magnetic form factors of the nucleon is determined at a range of discrete values of Q2Q^2 up to 1.41.4 GeV2^2. This is done by combining recent lattice QCD results for the electromagnetic form factors of the octet baryons with experimental determinations of those quantities. The most precise result is a small negative value for the strange magnetic moment: GMs(Q2=0)=0.07±0.03μNG_M^s(Q^2=0) = -0.07\pm0.03\,\mu_N. At larger values of Q2Q^2 both the electric and magnetic form factors are consistent with zero to within 22-sigma

    Reply to "Comment on `Lattice determination of Sigma - Lambda mixing' "

    Get PDF
    In this Reply, we respond to the above Comment. Our computation [Phys. Rev. D 91 (2015) 074512] only took into account pure QCD effects, arising from quark mass differences, so it is not surprising that there are discrepancies in isospin splittings and in the Sigma - Lambda mixing angle. We expect that these discrepancies will be smaller in a full calculation incorporating QED effects.Comment: 5 page

    On the metallicity gradient of the Galactic disk

    Get PDF
    Aims: The iron abundance gradient in the Galactic stellar disk provides fundamental constraints on the chemical evolution of this important Galaxy component. However the spread around the mean slope is, at fixed Galactocentric distance, larger than estimated uncertainties. Methods: To provide quantitative constraints on these trends we adopted iron abundances for 265 classical Cepheids (more than 50% of the currently known sample) based either on high-resolution spectra or on photometric metallicity indices. Homogeneous distances were estimated using near-infrared Period-Luminosity relations. The sample covers the four disk quadrants and their Galactocentric distances range from ~5 to ~17 kpc. Results: A linear regression over the entire sample provides an iron gradient of -0.051+/-0.004 dex/kpc. The above slope agrees quite well, within the errors, with previous estimates based either on Cepheids or on open clusters covering similar Galactocentric distances. However, once we split the sample in inner (Rg < 8 kpc) and outer disk Cepheids we found that the slope (-0.130+/-0.015 dex/kpc) in the former region is ~3 times steeper than the slope in the latter one (-0.042+/-0.004 dex/kpc). We found that in the outer disk the radial distribution of metal-poor (MP, [Fe/H]<-0.02 dex) and metal-rich (MR) Cepheids across the four disk quadrants does not show a clear trend when moving from the innermost to the external disk regions. We also found that the relative fractions of MP and MR Cepheids in the 1st and in the 3rd quadrant differ at 8 sigma (MP) and 15 sigma (MR) level.Comment: 6 pages, 6 figures, A&A accepte

    Charge Symmetry Violation in the Electromagnetic Form Factors of the Proton

    Get PDF
    Experimental tests of QCD through its predictions for the strange-quark content of the proton have been drastically restricted by our lack of knowledge of the violation of charge symmetry (CSV). We find unexpectedly tiny CSV in the proton's electromagnetic form factors by performing the first extraction of these quantities based on an analysis of lattice QCD data. The resulting values are an order of magnitude smaller than current bounds on proton strangeness from parity violating electron-proton scattering experiments. This result paves the way for a new generation of experimental measurements of the proton's strange form factors to challenge the predictions of QCD

    Multiple Scattering: Dispersion, Temperature Dependence, and Annular Pistons

    Full text link
    We review various applications of the multiple scattering approach to the calculation of Casimir forces between separate bodies, including dispersion, wedge geometries, annular pistons, and temperature dependence. Exact results are obtained in many cases.Comment: 15 pages, 12 figures, contributed to the Festschrift for Emilio Elizald
    corecore