139 research outputs found

    Is prenatal screening for Down syndrome needed in young pregnant women?

    Get PDF
    Background: Down syndrome originally known as Mongoloid’s idiocy is the most common autosomal disorder. Down syndrome (DS) can be detected by prenatal diagnosis which includes the triple marker screening test and chromosomal analysis.Methods: The study population comprised of 100 pregnant females amongst the age group of 20-45 (32.10±4.86) years. Triple Marker Test was done followed by amniocentesis or CVS with karyotyping or FISH.Results: Risk of <1:250 was considered high risk whereas ≥1:250 was considered as low risk. 32/45 (71%) were false-positive for Trisomy 21 detected as high risk by TMT. But there was good sensitivity and specificity for Trisomy 18.Conclusions: It can be concluded that the triple marker test is indeed only a screening test for the DS and that it has to be confirmed with the help of chromosomal analysis. The higher maternal age is an important parameter in DS but nowadays, even ones with a lower maternal age can also have a child with DS. So, in general, now all women are recommended to go for biochemical screening during their pregnancy

    Aortic valve stenosis-multimodality assessment with PET/CT and PET/MRI

    Get PDF
    Aortic valve disease is the most common form of heart valve disease in developed countries and a growing healthcare burden with an ageing population. Transthoracic and transoesophageal echocardiography remains central to the diagnosis and surveillance of patients with aortic stenosis, providing gold standard assessments of valve haemodynamics and myocardial performance. However, other multimodality imaging techniques are being explored for the assessment of aortic stenosis, including combined PET/CT and PET/MR. Both approaches provide unique information with respect to disease activity in the valve alongside more conventional anatomic assessments of the valve and myocardium in this condition. This review investigates the emerging use of PET/CT and PET/MR to assess patients with aortic stenosis, examining how the complementary data provided by each modality may be used for research applications and potentially in future clinical practice

    Contrast-enhanced computed tomography assessment of aortic stenosis

    Get PDF
    Objectives Non-contrast CT aortic valve calcium scoring ignores the contribution of valvular fibrosis in aortic stenosis. We assessed aortic valve calcific and non-calcific disease using contrast-enhanced CT. Methods This was a post hoc analysis of 164 patients (median age 71 (IQR 66-77) years, 78% male) with aortic stenosis (41 mild, 89 moderate, 34 severe; 7% bicuspid) who underwent echocardiography and contrast-enhanced CT as part of imaging studies. Calcific and non-calcific (fibrosis) valve tissue volumes were quantified and indexed to annulus area, using Hounsfield unit thresholds calibrated against blood pool radiodensity. The fibrocalcific ratio assessed the relative contributions of valve fibrosis and calcification. The fibrocalcific volume (sum of indexed non-calcific and calcific volumes) was compared with aortic valve peak velocity and, in a subgroup, histology and valve weight. Results Contrast-enhanced CT calcium volumes correlated with CT calcium score (r=0.80, p<0.001) and peak aortic jet velocity (r=0.55, p<0.001). The fibrocalcific ratio decreased with increasing aortic stenosis severity (mild: 1.29 (0.98-2.38), moderate: 0.87 (1.48-1.72), severe: 0.47 (0.33-0.78), p<0.001) while the fibrocalcific volume increased (mild: 109 (75-150), moderate: 191 (117-253), severe: 274 (213-344) mm 3 /cm 2). Fibrocalcific volume correlated with ex vivo valve weight (r=0.72, p<0.001). Compared with the Agatston score, fibrocalcific volume demonstrated a better correlation with peak aortic jet velocity (r=0.59 and r=0.67, respectively), particularly in females (r=0.38 and r=0.72, respectively). Conclusions Contrast-enhanced CT assessment of aortic valve calcific and non-calcific volumes correlates with aortic stenosis severity and may be preferable to non-contrast CT when fibrosis is a significant contributor to valve obstruction

    Contrast-enhanced computed tomography assessment of aortic stenosis

    Get PDF
    Abstract Objectives Non-contrast CT aortic valve calcium scoring ignores the contribution of valvular fibrosis in aortic stenosis. We assessed aortic valve calcific and non-calcific disease using contrast-enhanced CT. Methods This was a post hoc analysis of 164 patients (median age 71 (IQR 66–77) years, 78% male) with aortic stenosis (41 mild, 89 moderate, 34 severe; 7% bicuspid) who underwent echocardiography and contrast-enhanced CT as part of imaging studies. Calcific and non-calcific (fibrosis) valve tissue volumes were quantified and indexed to annulus area, using Hounsfield unit thresholds calibrated against blood pool radiodensity. The fibrocalcific ratio assessed the relative contributions of valve fibrosis and calcification. The fibrocalcific volume (sum of indexed non-calcific and calcific volumes) was compared with aortic valve peak velocity and, in a subgroup, histology and valve weight. Results Contrast-enhanced CT calcium volumes correlated with CT calcium score (r=0.80, p<0.001) and peak aortic jet velocity (r=0.55, p<0.001). The fibrocalcific ratio decreased with increasing aortic stenosis severity (mild: 1.29 (0.98–2.38), moderate: 0.87 (1.48–1.72), severe: 0.47 (0.33–0.78), p<0.001) while the fibrocalcific volume increased (mild: 109 (75–150), moderate: 191 (117–253), severe: 274 (213–344) mm3/cm2). Fibrocalcific volume correlated with ex vivo valve weight (r=0.72, p<0.001). Compared with the Agatston score, fibrocalcific volume demonstrated a better correlation with peak aortic jet velocity (r=0.59 and r=0.67, respectively), particularly in females (r=0.38 and r=0.72, respectively). Conclusions Contrast-enhanced CT assessment of aortic valve calcific and non-calcific volumes correlates with aortic stenosis severity and may be preferable to non-contrast CT when fibrosis is a significant contributor to valve obstruction

    Investigation into the mechanical properties of structural lightweight concrete reinforced with waste steel wires

    Get PDF
    The study of concrete incorporating different waste fibres has started to increase rapidly due to economic reasons and positive environmental effects. In the study reported here, waste steel wires from steel reinforcement and used formworks were blended with structural lightweight concrete, with the aim of replacing commercial steel fibres of controlled quality with recycled fibres. Compression, tensile, flexural and impact tests were performed to assess the mechanical properties of 28 d old concrete specimens reinforced with mixed waste steel wires, mixed steel fibres as well as plain concrete. The percentages of fibres examined in the fibre reinforced concrete (FRC) specimens were 0·25%, 0·50% and 0·75% (volume fraction of the concrete). With varying fibre contents, similar trends were observed in all the types of FRCs studied. It was thus concluded that waste steel wires could be used as a suitable alternative to industrial steel fibres for structural lightweight concrete applications
    • …
    corecore