80 research outputs found

    The Influence of Pine Island Ice Shelf Calving on Basal Melting

    Get PDF
    The combination of the Pine Island Ice Shelf (PIIS) draft and a seabed ridge beneath it form a topographic barrier, restricting access of warm Circumpolar Deep Water to a cavity inshore of the ridge, thus exerting an important control on PIIS basal ablation. In addition, PIIS has recently experienced several large calving events and further calving could significantly alter the cavity geometry. Changes in the ice front location, together with changes in ice thickness, might relax the topographic barrier and thus significantly change basal melt rates. Here, we consider the impact of past, and possible future, calving events on PIIS melt rates. We use a high‐resolution ocean model to simulate melt rates in both an idealized domain whose geometry captures the salient features of Pine Island Glacier, and a realistic geometry accurately resembling it, to explore how calving affects melt rates. The idealized simulations reveal that the melt response to calving has a sensitive dependence on the thickness of the gap between PIIS and the seabed ridge and inform our interpretation of the realistic simulations, which suggest that PIIS melt rates did not respond significantly to recent calving. However, the mean melt rate increases approximately linearly with further calving, and is amplified by approximately 10% relative to present day once the ice front reaches the ridge‐crest, taking less than one decade if calving maintains its present rate. This provides strong evidence that calving may represent an important, but as yet unexplored, contribution to the ice‐ocean sensitivity of the West Antarctic Ice Sheet

    Marine mineral exploration with controlled source electromagnetics at the TAG Hydrothermal Field, 26°N Mid‐Atlantic Ridge

    Get PDF
    Seafloor massive sulfide (SMS) deposits are of increasing economic interest in order to satisfy the relentless growth in worldwide metal demand. The Trans‐Atlantic Geotraverse (TAG) hydrothermal field at 26°N on the Mid‐Atlantic Ridge hosts several such deposits. This study presents new controlled source electromagnetic, bathymetric, and magnetic results from the TAG field. Potential SMS targets were selected based on their surface expressions in high‐resolution bathymetric data. High‐resolution reduced‐to‐the‐pole magnetic data show negative anomalies beneath and surrounding the SMS deposits, revealing large areas of hydrothermal alteration. Controlled source electromagnetic data, sensitive to the electrical conductivity of SMS mineralization, further reveal a maximum thickness of up to 80 m and conductivities of up to 5 S/m. SMS samples have conductivities of up to a few thousand Siemens per meter, suggesting that remotely inferred conductivities represent an average of metal sulfide ores combined with silicified and altered host basalt that likely dominates at greater depths

    Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1038/nature20136The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.USDO

    Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf

    Get PDF
    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change1, 2. The increased freshwater output from Antarctica is important in determining sea level rise1, the fate of Antarctic sea ice and its effect on the Earth’s albedo4, 5, ongoing changes in global deep-ocean ventilation6, and the evolution of Southern Ocean ecosystems and carbon cycling7, 8. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models3–5, 9 as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels10, 11, 12, 13, 14. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models

    Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries

    Get PDF
    Ocean-driven ice loss from the West Antarctic Ice Sheet is a significant contributor to sea-level rise. Recent ocean variability in the Amundsen Sea is controlled by near-surface winds. We combine palaeoclimate reconstructions and climate model simulations to understand past and future influences on Amundsen Sea winds from anthropogenic forcing and internal climate variability. The reconstructions show strong historical wind trends. External forcing from greenhouse gases and stratospheric ozone depletion drove zonally uniform westerly wind trends centred over the deep Southern Ocean. Internally generated trends resemble a South Pacific Rossby wave train and were highly influential over the Amundsen Sea continental shelf. There was strong interannual and interdecadal variability over the Amundsen Sea, with periods of anticyclonic wind anomalies in the 1940s and 1990s, when rapid ice-sheet loss was initiated. Similar anticyclonic anomalies probably occurred prior to the 20th century but without causing the present ice loss. This suggests that ice loss may have been triggered naturally in the 1940s but failed to recover subsequently due to the increasing importance of anthropogenic forcing from greenhouse gases (since the 1960s) and ozone depletion (since the 1980s). Future projections also feature strong wind trends. Emissions mitigation influences wind trends over the deep Southern Ocean but has less influence on winds over the Amundsen Sea shelf, where internal variability creates a large and irreducible uncertainty. This suggests that strong emissions mitigation is needed to minimise ice loss this century but that the uncontrollable future influence of internal climate variability could be equally important

    The response of ice sheets to climate variability

    Get PDF
    West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales

    West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing

    Get PDF
    Recent ice loss from the West Antarctic Ice Sheet has been caused by ocean melting of ice shelves in the Amundsen Sea. Eastward wind anomalies at the shelf break enhance the import of warm Circumpolar Deep Water onto the Amundsen Sea continental shelf, which creates transient melting anomalies with an approximately decadal period. No anthropogenic influence on this process has been established. Here, we combine observations and climate model simulations to suggest that increased greenhouse gas forcing caused shelf-break winds to transition from mean easterlies in the 1920s to the near-zero mean zonal winds of the present day. Strong internal climate variability, primarily linked to the tropical Pacific, is superimposed on this forced trend. We infer that the Amundsen Sea experienced decadal ocean ariability throughout the twentieth century, with warm anomalies gradually becoming more prevalent, offering a credible explanation for the ongoing ice loss. Existing climate model projections show that strong future greenhouse gas forcing creates persistent mean westerly shelf-break winds by 2100, suggesting a further enhancement of warm ocean anomalies. These wind changes are weaker under a scenario in which greenhouse gas concentrations are stabilized
    corecore