43,140 research outputs found

    Comment on ``Evidence for Anisotropic State of Two-Dimensional Electrons in High Landau Levels''

    Full text link
    In a recent letter M. Lilly et al [PRL 82, 394 (1999)] have shown that a highly anisotropic state can arise in certain two dimensional electron systems. In the large square samples studied, resistances measured in the two perpendicular directions are found to have a ratio that may be 60 or larger at low temperature and at certain magnetic fields. In Hall bar measurements, the anisotropy ratio is found to be much smaller (roughly 5). In this comment we resolve this discrepancy by noting that the anisotropy of the underlying sheet resistivities is correctly represented by Hall bar resistance measurements but shows up exponentially enhanced in resistance measurements on square samples due to simple geometric effects. We note, however, that the origin of this underlying resistivity anisotropy remains unknown, and is not addressed here.Comment: 1 page, minor calculational error repaire

    Magnetization-controlled spin transport in DyAs/GaAs layers

    Full text link
    Electrical transport properties of DyAs epitaxial layers grown on GaAs have been investigated at various temperatures and magnetic fields up to 12T. The measured longitudinal resistances show two distinct peaks at fields around 0.2 and 2.5T which are believed to be related to the strong spin-disorder scattering occurring at the phase transition boundaries induced by external magnetic field. An empirical magnetic phase diagram is deduced from the temperature dependent experiment, and the anisotropic transport properties are also presented for various magnetic field directions with respect to the current flow.Comment: 3 pages with 3 figure

    Observation of a cyclotron harmonic spike in microwave-induced resistances in ultraclean GaAs/AlGaAs quantum wells

    Full text link
    We report the observation of a colossal, narrow resistance peak that arises in ultraclean (mobility 3X10^7cm^2/Vs) GaAs/AlGaAs quantum wells (QWs) under millimeterwave irradiation and a weak magnetic field. Such a spike is superposed on the 2nd harmonic microwave-induced resistance oscillations (MIRO) but having an amplitude > 300% of the MIRO, and a typical FWHM ~50 mK, comparable with the Landau level width. Systematic studies show a correlation between the spike and a pronounced negative magnetoresistance in these QWs, suggesting a mechanism based on the interplay of strong scatterers and smooth disorder. Alternatively, the spike may be interpreted as a manifestation of quantum interference between the quadrupole resonance and the higher-order cyclotron transition in well-separated Landau levels.Comment: 4pages, 4figure

    Crystallization in a model glass: influence of the boundary conditions

    Full text link
    Using molecular dynamics calculations and the Voronoi tessellation, we study the evolution of the local structure of a soft-sphere glass versus temperature starting from the liquid phase at different quenching rates. This study is done for different sizes and for two different boundary conditions namely the usual cubic periodic boundary conditions and the isotropic hyperspherical boundary conditions for which the particles evolve on the surface of a hypersphere in four dimensions. Our results show that for small system sizes, crystallization can indeed be induced by the cubic boundary conditions. On the other hand we show that finite size effects are more pronounced on the hypersphere and that crystallization is artificially inhibited even for large system sizes.Comment: 11 pages, 2 figure

    TWITTER IN THE MARKETING

    Get PDF
    We report on a compact and highly efficient diode-end-pumped TEM00 Nd:YVO4 slab laser with an output power of 103 W and beam quality M2 1.5. The optical-to-optical efficiency was 41.5%. In electro-optically Q-switched operation. 83 W of average power at a pulse-repetition rate of 50 kHz with a pulse length of 11.3 ns was obtained. At a pulse-repetition rate of 10 kHz, 5.6 mJ of pulse energy, and 870 kW of peak power were measured

    Reduction of mm-Regular Noncrossing Partitions

    Get PDF
    In this paper, we present a reduction algorithm which transforms mm-regular partitions of [n]={1,2,...,n}[n]=\{1, 2, ..., n\} to (m1)(m-1)-regular partitions of [n1][n-1]. We show that this algorithm preserves the noncrossing property. This yields a simple explanation of an identity due to Simion-Ullman and Klazar in connection with enumeration problems on noncrossing partitions and RNA secondary structures. For ordinary noncrossing partitions, the reduction algorithm leads to a representation of noncrossing partitions in terms of independent arcs and loops, as well as an identity of Simion and Ullman which expresses the Narayana numbers in terms of the Catalan numbers

    Piezoelectric mechanism of orientation of stripe structures in two-dimensional electron systems

    Full text link
    A piezoelectric mechanism of orientation of stripes in two-dimensional quantum Hall systems in GaAs heterostructures is considered. The anisotropy of the elastic moduli and the boundary of the sample are taken into account. It is found that in the average the stripes line up with the [110] axis. In double layer systems the wave vector of the stripe structure rotates from the [110] to [100] axis if the period of density modulation becomes large than the interlayer distance. From the experimental point of view it means that in double layer systems anisotropic part of resistivity changes its sign under variation of the external magnetic field.Comment: 8 page

    Separation probabilities for products of permutations

    Get PDF
    We study the mixing properties of permutations obtained as a product of two uniformly random permutations of fixed cycle types. For instance, we give an exact formula for the probability that elements 1,2,...,k1,2,...,k are in distinct cycles of the random permutation of {1,2,...,n}\{1,2,...,n\} obtained as product of two uniformly random nn-cycles

    Semileptonic DqK1νD_{q}\to K_{1}\ell \nu and nonleptonic DK1πD\to K_1 \pi decays in three--point QCD sum rules and factorization approach

    Full text link
    We analyze the semileptonic DqK1νD_{q}\to K_1 \ell\nu transition with q=u,d,sq=u, d, s, in the framework of the three--point QCD sum rules and the nonleptonic DK1πD\to K_1 \pi decay within the QCD factorization approach. We study DqD_{q} to K1(1270)K_1(1270) and K1(1400)K_1(1400) transition form factors by separating the mixture of the K1(1270)K_1(1270) and K1(1400)K_1(1400) states. Using the transition form factors of the DK1D\to K_1 , we analyze the nonleptonic DK1πD\to K_1 \pi decay. We also present the decay amplitude and decay width of these decays in terms of the transition form factors. The branching ratios of these channel modes are also calculated at different values of the mixing angle θK1\theta_{K_1} and compared with the existing experimental data for the nonleptonic case.Comment: 28 Pages, 20 Figures and 9 Table

    Spatial oscillations in the spontaneous emission rate of an atom inside a metallic wedge

    Full text link
    A method of images is applied to study the spontaneous emission of an atom inside a metallic wedge with an opening angle of π/N\pi/N, where N is an arbitrary positive integer. We show the method of images gives a rate formula consistent with that from Quantum Electrodynamics. Using the method of images, we show the correspondence between the oscillations in the spontaneous emission rate and the closed-orbits of emitted photon going away and returning to the atom inside the wedge. The closed-orbits can be readily constructed using the method of images and they are also extracted from the spontaneous emission rate.Comment: 8 figure
    corecore