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Abstract

In this paper, wepresent a reduction algorithm which transformsgegular partitions ofn] =
{1,2,...,n} to (m — 1)-regular partitions ofn — 1]. We show hat this algorithm preserves the
noncrossing property. This yid a simple explanation of an identity due to Simion—Uliman and
Klazar in connection with enumeration problermn noncrossing partitions and RNA secondary
structures. For alinary noncrossing partitions, the reductidgorithm leads to a representation of
noncrossing partitions in terms of independent amd loops, as well as adentity of Simion and
Ullman which expresses théarayana numbers in terms of the Catalan numbers.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A partition P of [n] = {1,2,...,n} is a collection{Bs, By, ..., Bk} of nonempty
disjoint subsets offn], calledblocks suchthatB; U - - - U Bx = [n]. We mayassume that
{B1, Ba, ..., By} are listed in the increasing order thfeir minimum elements. The set of

all partitions of[n] with k blocks is denoted b (n, k). The cardinality of P(n, k) is the
well-known Stirling numbeof the seond kind [L5].

A partition P € P(n, k) is calledm-regular, m > 1, if for anytwo distinct elementg, y
in the same block, we hayr—y| > m. If all blocks of P are singletons (of cardinality one)
we setm = oo. The set ofm-regular partitions inP(n, k) is denoted byP(n, k, m), and

E-mail addresses: chen@nankai.edu.cn (W.Y.C. Chen), dengyp@eyou.com (E.Y.P. Deng),
du@nankai.edu.cn (R.R.X. Du).

0195-6698/%$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2004.02.009


http://www.elsevier.com/locate/ejc

238 W.Y.C. Chen et al. / European Journal of Combinatorics 26 (2005) 237-243

its cardinality is denoted bp(n, k, m). Whenm = 1, a 1-regular partition is an ordinary
partition. A partition is calledpoor if each block contains at most two elements. The set of
all poor partitions inP(n, k, m) is denoted byP»(n, k, m), and its cardinality is denoted
by p2(n, k, m).

Any partition P can be expressed by itanonical sequential form P = ajap---an
wherea; = j if the elemeni is in the blockB;. For instance, 1231242 is the canonical
sequential form ofP = (1, 4)(2, 5, 7)(3)(6) € P(7, 4, 2). In fact, one can use a sequence
on any set ok symbols to represent a partitionloblocks, where the symbols are linearly
ordered. If we use the alphabet, b, c, d} of four letterswith the ordera < b < ¢ < d,
then the corresponding canonical sequential form Fobecomesabcabdb. Note hat
if ajap---a, is a canonical sequential form of a partition withblocks, then each of
1,2,...,k appears at least once and the first occurrenéepoécedes thatof if i < j.

The sequencaya; - - - ay is also called theestricted growth function of a partition P [18§].
These two requirements are the normalization conditions of the Davenport—Schinzel
sequencesy, 8], as noted by Klazarq, 7].

We say thatP € P(n,k, m) is abab-free if its canonical sequential form does

not contain any subsequence (not necessarily a consecutive segment) of the form
--a---b---a---b---, which is often written agbab. Equivalently, P is abab-free if

there do not exist four elementsy,u, v € [n] with x < u < y < v suchthatx, y

belong to the ame block andi, v belong to another block. The setalfab-free partitions

in P(n,k, m) is denoted byP(abab, n, k, m). An abab-free partition is also called a

noncrossing partition. For example, the partitiorP = (1, 4)(2, 5, 7)(3)(6) is not abab-

free because of the violation of the four elements 2 < 4 < 5.

Regular partitions also arise in the enuragon of RNA secondary structures. In
biology, an RNA sequence can be viewed as a sequence of molecules A (adenine),
C (cytosine), G guanine) and U (uracil); these single-stranded molecules fold onto
themselves by the so-call&thtson—Crick rules: A forms base pairs with U and C forms
base pairs with G. A helical structure can be formed based on the sequence of molecules
and the rules. If such a helical structure can be realized as a planar graph, then it is called
anRNA secondary structure. In the mathematical modelling of RNA secondary structures,
one may disregard what the molecules are and consider a helical structure as a sequence
of numbers 12, ..., n along with some base pairs, where we have the restriction that all
base pairs are allowed except for any two adjacent nunmiteadi + 1, and there do not
exist two bae pairs(i, j) and(k,l) withi < k < j < |. In this seting, the setR(n, k)
of all RNA secondary structures with lengthandk base pairs can be viewed as the set
Po2(abab, n, n — Kk, 2) of noncrossing poor pttions. A formula forR(n, k) is obtained by
Schmitt and Watermarip] in terms ofthe Narayana numbers.

However, a further biological consideration suggests a generalization of the above
mathematical modelling of RNA secondaryristtures. As pointed out by Hofacker,
Schuster and StadleB], within each matching bracket (or base pair) there should be at
least three elements. In the language of partitions, that is to say thand j are in the
same bbck, then we have — j| > 4. Equivalently, this is the notion of 4-regular partitions.
Thus, we are led to the study ofregular noncrossing poor partitions. It is known that for
m = 1, such partitions correspond to Motzkin paths,foe= 2, there is a correspondence
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with Motzkin paths without peak®] 17]. In general, Klazar§] gives a fomula for the
number ofm-regular noncrossing poor partitions.

The main result of this paper is a reduction algorithm that transforms a partition in
P(n, k, m) to a partition inP(n — 1, k — 1, m — 1). We show hat the algorithm preserves
the noncrossing property or thebab-free property. This leads to a quick explanation of
the following identity:

p(abab, n, k, m) = pp(abab,n— 1,k — 1, m—1). (1.2)

An earlier version of this relation was first obtained by Simion and Ullnia®, jwhere
the relation is stated fam = 2. Klazar found the above identity in general and gave a
generating function proof irg]. Another bijective proof of 1.1) was found by Klazar{].
We should note that the notations ia,[5] are somewhat ffierent. No simple explanation
of (1.1) seems to be known. We hope that our algorithm may have served this purpose.

It is worth noting that ordinary noncrosg partitions can be further reduced into
independent arcs and loops (defined subsequently, just bEfie@em 3.2 Essentially,
this gives a correspondence between noncrogsnifions and 2-Motzkin paths, and leads
to an identity expressing the Narayana numbers in terms of the Catalan numbers due to
Simion and Ullman14).

2. Thereduction algorithm

We begin with a bijective understanding of an identity of Yari@][concerning the
number ofm-regular partitions of n].

Theorem 2.1. For m > 2, we have
pin,k,m)=pn—1,k—1m-—1). (2.2)

For thecasem = 2, a 2regular partition is called a “restricted partition” an@.{) was
obtained by Prodinger[)]. Bijective proofs of @.1) for 2-regular partitions are given by
many people including Prodinget and Yang [19]. However, these proofs do not seem
to apply to generai-regular partitions.

In this pgper, we find a simple reduction algorithm forregular partitions. The key idea
is to use a digraph to represent a partition, which is cahedinear representation. Given
a partition P = {Bs, By, ..., Bk} of [n], we draw adigraphD(P), or D for short, on the
vertex sefn]. For each blockB;, we asocate it with a directed patP; starting with the
minimum element irB;, and going through elements iB; in the increasing order. Note
that when a blockB; has only one element, the corresponding path is an isolated vertex.
The digraphD can be drawn on a line such that the vertice®,1. ., n are arranged in the
increasing order and the arcs always have ihection from left to right. For this reason,
one does not really need to display the direction of each arcHged). An undirected
version of the linear representation of a partition was used by SimiGh As we will see,
the directions are useful to clarify the argument for the reduction algorithm.

Thereduction algorithm. For a pattition P € P(n, k, m), wheren, k, m > 1, we may
reduce it to apatitionin P(n— 1,k — 1, m— 1):
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P(5,3,2) P(4,2,1)
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(1,5)(2.4)(3) m (14)(2,3) N

Fig. 1. Correspondence betwep5, 3, 2) andP (4, 2, 1).

1. Foreachardi, j) in the linear representation &, replkace it by the arci, j — 1).
2. Delde the vertex.

Theorem 2.2. Whenm > 2, the reduction algorithm gives a bijection between P (n, k, m)
andP(n—1,k—1, m-1).

Proof. Suppose thatP is a partition inP(n, k, m). Let D be thelinear representation
of P, and letD’ be the digraph obtained from by reducing every arc (replacing, j)
by (i, j — 1)). Sincem > 2, it is clear that inD’ every arc ha thedirection from the
smaller vertex to the bigger vertex, and for each verjer D’, nather its indegree nor
outdegree is greater than 1. Thus, each componem’at a directed path from the
minimum vertex to the maximum verter ithe inceasing order. In other word®)’ is
also a linear representation of am — 1)-regular partition of[n]. It is easy to see that
D’ has the same number of arcs@slt follows thatD’ andD have the same number of
connected components. Let be the digraph obtained from’ by deleting the isolated
vertexn. ThenH is the linear representation of the desired partition.

By reversing the above pcedure, one may show that the reduction algorithm yields a
bijection. O

An example is given irFig. 1, which illustrates the bijection betwedn(5, 3, 2) and
P4,2,1).

3. Reduction of noncrossing partitions

In this section, we show that the reduction algorithm preserves the noncrossing property.
This gives a simple explanation of the following identity due to Simion and Ullmh [
and Klazar §].
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AAN = o6\ = N

(1,2,6)(3,4)(5) (M(25)(3)(4)

Fig. 2. A noncrossing partition andefwrresponding 2-Motzkin path.

Theorem 3.1. For m > 2, we have
p(abab, n, k, m) = pp(abab,n— 1,k — 1, m—1). (3.2)

Proof. SupposeP is a partition inP(abab, n, k, m) and D is the linear representation
of P. Let Q be the partition of[n — 1] obtained fromP by applying the reduction
algorithm, andD’ the linear representation @. SupposeD’ has a path of length two,
i — j — k, say, then(i, j + 1) and(j, k + 1) are two arcs irD. SinceD is a linear
representation, these two ar@sj + 1) and(j, k + 1) belong to different components,
which oontradicts the assumption th& is abab-free. It follows that Q is a poor
patition.

By the reduction algorithm we see tHathask — 1 blocks and ism— 1)-regular. It rem-
ains to show tha@ is noncrossing. Suppose that there are four elementsu <y < v
suchthatB; = {x, y} andB; = {u, v}, whereB;j andB; are distinct blocks of. Then in
the linear representatidd’, (x, y) and(u, v) are two crossing arcs, it follows that, y+1)
and(u, v + 1) are two crossing arcs iB, which is a ontradiction to the assumption that
P is noncrossing. The converse can be justified in the same manner. Therefore, we have
established the desired one-to-one corresponderide.

In Fig. 1, there are only two partitions inP(abab,5, 3,2): (1, 3,5)(2)(4) and
(1, 5)(2, 49 (3); afterapplying the reduction algorithm, we g@t 2)(3, 4) and(1, 4)(2, 3),
which are the two partitions iz (abab, 4, 2, 1).

Theorem 3.1is useftil for the enumeration of-regular noncrossing partition$][
We recall that the notion ofn-regular noncrossing poor partitions coincides with that of
general RNA secondary structures. The reduction algorithm can be used even for ordinary
noncrossing partitions. In a digrafih, we say tlat two arcs aréndependent if they have
no vertex in common, andlaop is an arc from a vertex to itself.

Theorem 3.2. There is a one-to-one correspondence between noncrossing partitions of
[n] with k blocks and digraphson [n — 1] consisting of n — k independent noncrossing arcs
or loops.

Digraphs described irnTheorem 3.2are related to 2-Motzkin paths introduced by
Barcucci, del Lungo, Pergola and Pinzadj.[Roughly speaking, if we consider loops
and singletons as straight and wavydesteps respectively, then we obtain

Theorem 3.3. There is a one-to-one correspondence between noncrossing partitions of
[n] with k blocks and 2-Motzkin paths of length n — 1 with n — k straight level stepsor up
steps.

Fig. 2is an illustration of the above bijection.
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In [4], Deutsch and Shapiro established a Higtbetween ordered trees and 2-Motzkin
paths, and derived many important consequences regarding combinatorial structures
suchas Dyck paths, bushe$), 1, 2}-trees, Schoder paths, RNA secondary structures,
noncrossing partitions, fine paths, etc. Thewe theorem on the reduction of noncrossing
patitions to 2-Motzkin paths can be viewed as a simpler version of the Deutsch—Shapiro
correspondence, since there are easy bijections between ordered trees and noncrossing
partitions [3, 11].

Theorem 3.3eads to an identity of Simion and Ullmaf4] expressing the Narayana

numbers by the Catalan numberseddll that the Catalan numb&, = Wll <2n”>

counts the number of plane trees witht 1 vertices, and the Narayana numbéfx =
1(n

5 <k> (kL) is the number of plane trees with+ 1 vertices andk leaves, which also
counts the number of normssing partitions ofn] with k blocks [3, 11].
Corollary 3.4 (Simion and Ullman 1L4], Corollary 3.2). For alln > 1and1 < k < n,
we have the following relation:
n—k .
n—1 n—2 -1

Nn,k=§< . )(n_i_k>c.. (3.2)
Proof. SupposeP is a noncrossing partition dn] with k blocks. LetH be the digraph on
[n—1] with independent noncrossing arcs, nambglinear representation of the partition
obtained fromP by applying the reduction algorithm. Suppasis the number of loops

in H. Removing the loops, we get a digrapti onn—i — 1 vertices withk — 1 components
consisting oih — k — i independentarcs an#t 2-i —n — 1 isolaed vertices. The digraph
H’ corresponds to a non@seng poor patition on[n — i — 1] with k — 1 blocks famely

2k +i — n — 1 singletons andh — k — i blocks of size two). Hence we get

n—k n_1

Nnk = 2; < i ) pz2(abab, —i — 1,k — 1, 1). (3.3)

1=
There is a bijection between noncrossing poor partitiofigof 2k —2i ] without singletons
and Dyck paths of lengthr2-2k —2i (see [Lg], p. 222, Exercise 6.19 (n) and its solution on
p. 258), and it is well-known that the number of such Dyck paths equal®ithek — i )-th
Caalan number. In view of the number of ways to choose the singletons, we obtain

2n —2i — 2k
By replacingn — i — k with i and taking summation, we ge&.9). O

p2(abab, —i — 1,k — 1, 1)=< n-i-1 )cn_i_k.
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