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Abstract

In this paper, wepresent a reduction algorithm which transformsm-regular partitions of[n] =
{1, 2, . . . , n} to (m − 1)-regular partitions of[n − 1]. We show that this algorithm preserves the
noncrossing property. This yields a simple explanation of an identity due to Simion–Ullman and
Klazar in connection with enumeration problems on noncrossing partitions and RNA secondary
structures. For ordinary noncrossing partitions, the reduction algorithm leads to a representation of
noncrossing partitions in terms of independent arcsand loops, as well as an identity of Simion and
Ullman which expresses theNarayana numbers in terms of the Catalan numbers.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A partition P of [n] = {1, 2, . . . , n} is a collection{B1, B2, . . . , Bk} of nonempty
disjoint subsets of[n], calledblocks suchthat B1 ∪ · · · ∪ Bk = [n]. We mayassume that
{B1, B2, . . . , Bk} are listed in the increasing order oftheir minimum elements. The set of
all partitions of[n] with k blocks is denoted byP(n, k). Thecardinality ofP(n, k) is the
well-known Stirling number of the second kind [15].

A partition P ∈ P(n, k) is calledm-regular, m ≥ 1, if for anytwo distinct elementsx, y
in the same block, we have|x−y| ≥ m. If all blocks ofP are singletons (of cardinality one)
we setm = ∞. The set ofm-regular partitions inP(n, k) is denoted byP(n, k, m), and
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its cardinality is denoted byp(n, k, m). Whenm = 1, a 1-regular partition is an ordinary
partition. A partition is calledpoor if each block contains at most two elements. The set of
all poor partitions inP(n, k, m) is denoted byP2(n, k, m), and its cardinality is denoted
by p2(n, k, m).

Any partition P can be expressed by itscanonical sequential form P = a1a2 · · · an

whereai = j if the elementi is in the blockB j . For instance, 1231242 is the canonical
sequential form ofP = (1, 4)(2, 5, 7)(3)(6) ∈ P(7, 4, 2). In fact, one can use a sequence
on any set ofk symbols to represent a partition ofk blocks, where the symbols are linearly
ordered. If we use the alphabet{a, b, c, d} of four letterswith the ordera < b < c < d,
then the corresponding canonical sequential form forP becomesabcabdb. Note that
if a1a2 · · · an is a canonical sequential form of a partition withk blocks, then each of
1, 2, . . . , k appears at least once and the first occurrence ofi precedes that ofj if i < j .
The sequencea1a2 · · · an is also called therestricted growth function of a partition P [18].
These two requirements are the normalization conditions of the Davenport–Schinzel
sequences [2, 8], as noted by Klazar [6, 7].

We say thatP ∈ P(n, k, m) is abab-free if its canonical sequential form does
not contain any subsequence (not necessarily a consecutive segment) of the form
· · · a · · · b · · · a · · · b · · ·, which is often written asabab. Equivalently, P is abab-free if
there do not exist four elementsx, y, u, v ∈ [n] with x < u < y < v suchthat x, y
belong to the same block andu, v belong to another block. The set ofabab-free partitions
in P(n, k, m) is denoted byP(abab, n, k, m). An abab-free partition is also called a
noncrossing partition. For example, the partitionP = (1, 4)(2, 5, 7)(3)(6) is not abab-
free because of the violation of the four elements 1< 2 < 4 < 5.

Regular partitions also arise in the enumeration of RNA secondary structures. In
biology, an RNA sequence can be viewed as a sequence of molecules A (adenine),
C (cytosine), G (guanine) and U (uracil); these single-stranded molecules fold onto
themselves by the so-calledWatson–Crick rules: A forms base pairs with U and C forms
base pairs with G. A helical structure can be formed based on the sequence of molecules
and the rules. If such a helical structure can be realized as a planar graph, then it is called
anRNA secondary structure. In the mathematical modelling of RNA secondary structures,
one may disregard what the molecules are and consider a helical structure as a sequence
of numbers 1, 2, . . . , n along with some base pairs, where we have the restriction that all
base pairs are allowed except for any two adjacent numbersi andi + 1, and there do not
exist two base pairs(i, j) and(k, l) with i < k < j < l. In this setting, the setR(n, k)

of all RNA secondary structures with lengthn andk base pairs can be viewed as the set
P2(abab, n, n − k, 2) of noncrossing poor partitions. A formula forR(n, k) is obtained by
Schmitt and Waterman [12] in terms ofthe Narayana numbers.

However, a further biological consideration suggests a generalization of the above
mathematical modelling of RNA secondary structures. As pointed out by Hofacker,
Schuster and Stadler [5], within each matching bracket (or base pair) there should be at
least three elements. In the language of partitions, that is to say that ifi and j are in the
same block, then we have|i − j | ≥ 4.Equivalently, this is the notion of 4-regular partitions.
Thus, we are led to the study ofm-regular noncrossing poor partitions. It is known that for
m = 1, such partitions correspond to Motzkin paths, form = 2, there is a correspondence
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with Motzkin paths without peaks [9, 17]. In general, Klazar [6] gives a formula for the
number ofm-regular noncrossing poor partitions.

The main result of this paper is a reduction algorithm that transforms a partition in
P(n, k, m) to a partition inP(n − 1, k − 1, m − 1). We show that the algorithm preserves
the noncrossing property or theabab-free property. This leads to a quick explanation of
the following identity:

p(abab, n, k, m) = p2(abab, n − 1, k − 1, m − 1). (1.1)

An earlier version of this relation was first obtained by Simion and Ullman [14], where
the relation is stated form = 2. Klazar found the above identity in general and gave a
generating function proof in [6]. Another bijective proof of (1.1) was found by Klazar [7].
We should note that the notations in [4, 5] are somewhat different. No simple explanation
of (1.1) seems to be known. We hope that our algorithm may have served this purpose.

It is worth noting that ordinary noncrossing partitions can be further reduced into
independent arcs and loops (defined subsequently, just beforeTheorem 3.2). Essentially,
this gives a correspondence between noncrossingpartitions and 2-Motzkin paths, and leads
to an identity expressing the Narayana numbers in terms of the Catalan numbers due to
Simion and Ullman [14].

2. The reduction algorithm

We begin with a bijective understanding of an identity of Yang [19] concerning the
number ofm-regular partitions of[n].
Theorem 2.1. For m ≥ 2, we have

p(n, k, m) = p(n − 1, k − 1, m − 1). (2.1)

For thecasem = 2, a 2-regular partition is called a “restricted partition” and (2.1) was
obtained by Prodinger [10]. Bijective proofs of (2.1) for 2-regular partitions are given by
many people including Prodinger [10] and Yang [19]. However, these proofs do not seem
to apply to generalm-regular partitions.

In this paper, we find a simple reduction algorithm form-regular partitions. The key idea
is to use a digraph to represent a partition, which is calledthe linear representation. Given
a partition P = {B1, B2, . . . , Bk} of [n], we draw adigraphD(P), or D for short, on the
vertex set[n]. For each blockBi , we associate it with a directed pathPi starting with the
minimum element inBi , and going through elements inBi in the increasing order. Note
that when a blockBi has only one element, the corresponding path is an isolated vertex.
The digraphD can be drawn on a line such that the vertices 1, 2, . . . , n are arranged in the
increasing order and the arcs always have the direction from left to right. For this reason,
one does not really need to display the direction of each arc (seeFig. 1). An undirected
version of the linear representation of a partition was used by Simion [13]. As we will see,
the directions are useful to clarify the argument for the reduction algorithm.

The reduction algorithm. For a partition P ∈ P(n, k, m), wheren, k, m ≥ 1, we may
reduce it to apartition in P(n − 1, k − 1, m − 1):
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Fig. 1. Correspondence betweenP(5, 3, 2) andP(4, 2, 1).

1. For each arc(i, j) in the linear representation ofP, replace it by the arc(i, j − 1).

2. Delete the vertexn.

Theorem 2.2. When m ≥ 2, the reduction algorithm gives a bijection between P(n, k, m)

and P(n − 1, k − 1, m − 1).

Proof. Suppose thatP is a partition inP(n, k, m). Let D be thelinear representation
of P, and letD′ be the digraph obtained fromD by reducing every arc (replacing(i, j)
by (i, j − 1)). Sincem ≥ 2, it is clear that inD′ every arc has thedirection from the
smaller vertex to the bigger vertex, and for each vertexj in D′, neither its indegree nor
outdegree is greater than 1. Thus, each component ofD′ is a directed path from the
minimum vertex to the maximum vertex in the increasing order. In other words,D′ is
also a linear representation of an(m − 1)-regular partition of[n]. It is easy to see that
D′ has the same number of arcs asD. It follows thatD′ andD have the same number of
connected components. LetH be the digraph obtained fromD′ by deleting the isolated
vertexn. ThenH is the linear representation of the desired partition.

By reversing the above procedure, one may show that the reduction algorithm yields a
bijection. �

An example is given inFig. 1, which illustrates the bijection betweenP(5, 3, 2) and
P(4, 2, 1).

3. Reduction of noncrossing partitions

In this section, we show that the reduction algorithm preserves the noncrossing property.
This gives a simple explanation of the following identity due to Simion and Ullman [14]
and Klazar [6].
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Fig. 2. A noncrossing partition and the corresponding 2-Motzkin path.

Theorem 3.1. For m ≥ 2, we have

p(abab, n, k, m) = p2(abab, n − 1, k − 1, m − 1). (3.1)

Proof. SupposeP is a partition inP(abab, n, k, m) and D is the linear representation
of P. Let Q be the partition of[n − 1] obtained fromP by applying the reduction
algorithm, andD′ the linear representation ofQ. SupposeD′ has a path of length two,
i → j → k, say, then(i, j + 1) and( j, k + 1) are two arcs inD. SinceD is a linear
representation, these two arcs(i, j + 1) and ( j, k + 1) belong to different components,
which contradicts the assumption thatP is abab-free. It follows that Q is a poor
partition.

By the reduction algorithm we see thatQ hask −1 blocks and is(m−1)-regular. It rem-
ains to show thatQ is noncrossing. Suppose that there are four elementsx < u < y < v

suchthat Bi = {x, y} andB j = {u, v}, whereBi andB j are distinct blocks ofQ. Then in
the linear representationD′, (x, y) and(u, v) are two crossing arcs, it follows that(x, y+1)

and(u, v + 1) are two crossing arcs inD, which is a contradiction to the assumption that
P is noncrossing. The converse can be justified in the same manner. Therefore, we have
established the desired one-to-one correspondence.�

In Fig. 1, there are only two partitions inP(abab, 5, 3, 2): (1, 3, 5)(2)(4) and
(1, 5)(2, 4)(3); afterapplying the reduction algorithm, we get(1, 2)(3, 4) and(1, 4)(2, 3),
which are the two partitions inP2(abab, 4, 2, 1).

Theorem 3.1is useful for the enumeration ofm-regular noncrossing partitions [6].
We recall that the notion ofm-regular noncrossing poor partitions coincides with that of
general RNA secondary structures. The reduction algorithm can be used even for ordinary
noncrossing partitions. In a digraphD, we say that two arcs areindependent if they have
no vertex in common, and aloop is an arc from a vertex to itself.

Theorem 3.2. There is a one-to-one correspondence between noncrossing partitions of
[n] with k blocks and digraphs on [n −1] consisting of n −k independent noncrossing arcs
or loops.

Digraphs described inTheorem 3.2are related to 2-Motzkin paths introduced by
Barcucci, del Lungo, Pergola and Pinzani [1]. Roughly speaking, if we consider loops
and singletons as straight and wavy level steps respectively, then we obtain

Theorem 3.3. There is a one-to-one correspondence between noncrossing partitions of
[n] with k blocks and 2-Motzkin paths of length n − 1 with n − k straight level steps or up
steps.

Fig. 2 is an illustration of the above bijection.
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In [4], Deutsch and Shapiro established a bijection between ordered trees and 2-Motzkin
paths, and derived many important consequences regarding combinatorial structures
suchas Dyck paths, bushes,{0, 1, 2}-trees, Schr¨oder paths, RNA secondary structures,
noncrossing partitions, fine paths, etc. The above theorem on the reduction of noncrossing
partitions to 2-Motzkin paths can be viewed as a simpler version of the Deutsch–Shapiro
correspondence, since there are easy bijections between ordered trees and noncrossing
partitions [3, 11].

Theorem 3.3leads to an identity of Simion and Ullman [14] expressing the Narayana

numbers by the Catalan numbers. Recall that the Catalan numberCn = 1
n+1

(
2n
n

)
counts the number of plane trees withn + 1 vertices, and the Narayana numberNn,k =
1
n

(
n
k

) (
n

k−1

)
is the number of plane trees withn + 1 vertices andk leaves, which also

counts the number of noncrossing partitions of[n] with k blocks [3, 11].

Corollary 3.4 (Simion and Ullman [14], Corollary 3.2). For all n ≥ 1 and 1 ≤ k ≤ n,
we have the following relation:

Nn,k =
n−k∑
i=0

(
n − 1

2i

)(
n − 2i − 1
n − i − k

)
Ci . (3.2)

Proof. SupposeP is a noncrossing partition on[n] with k blocks. LetH be the digraph on
[n−1] with independent noncrossing arcs, namely the linear representation of the partition
obtained fromP by applying the reduction algorithm. Supposei is the number of loops
in H . Removing the loops, we get a digraphH ′ onn− i −1 vertices withk −1 components
consisting ofn − k − i independent arcs and 2k + i − n − 1 isolated vertices. The digraph
H ′ corresponds to a noncrossing poor partition on [n − i − 1] with k − 1 blocks (namely
2k + i − n − 1 singletons andn − k − i blocks of size two). Hence we get

Nn,k =
n−k∑
i=0

(
n − 1

i

)
p2(abab,−i − 1, k − 1, 1). (3.3)

There is a bijection between noncrossing poor partitions of[2n−2k−2i ] without singletons
and Dyck paths of length 2n−2k−2i (see [16], p. 222, Exercise 6.19 (n) and its solution on
p. 258), and it is well-known that the number of such Dyck paths equals the(n − k − i)-th
Catalan number. In view of the number of ways to choose the singletons, we obtain

p2(abab,−i − 1, k − 1, 1) =
(

n − i − 1
2n − 2i − 2k

)
Cn−i−k .

By replacingn − i − k with i and taking summation, we get (3.2). �
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