
ar
X

iv
:1

20
2.

64
71

v1
  [

m
at

h.
C

O
] 

 2
9 

Fe
b 

20
12

Separation probabilities for products of permutations

Olivier Bernardi∗, Rosena R. X. Du, Alejandro H. Morales and Richard P. Stanley

March 1, 2012

Abstract

We study the mixing properties of permutations obtained as a product of two uniformly
random permutations of fixed cycle types. For instance, we give an exact formula for the prob-
ability that elements 1, 2, . . . , k are in distinct cycles of the random permutation of {1, 2, . . . , n}
obtained as product of two uniformly random n-cycles.

1 Introduction

We study certain separation probabilities for products of permutations. The archetypal question
can be stated as follows: in the symmetric group Sn, what is the probability that the elements
1, 2, . . . , k are in distinct cycles of the product of two n-cycles chosen uniformly randomly? The
answer is surprisingly elegant: the probability is 1

k! if n − k is odd and 1
k! +

2
(k−2)!(n−k+1)(n+k) if

n−k is even. This result was originally conjectured by Bóna [3] for k = 2 and n odd. Subsequently,
Du and Stanley proved it for all k and proposed additional conjectures [11]. The goal of this paper
is to prove these conjectures, and establish generalizations of the above result. Our approach is
different from the one used in [11].

Let us define a larger class of problems. Given a tuple A = (A1, . . . , Ak) of k disjoint non-empty
subsets of {1, . . . , n}, we say that a permutation π is A-separated if no cycle of π contains elements
of more than one of the subsets Ai. Now, given two integer partitions λ, µ of n, one can wonder
about the probability Pλ,µ(A) that the product of two uniformly random permutations of cycle
type λ and µ is A-separated. The example presented above corresponds to A = ({1}, . . . , {k}) and
λ = µ = (n). Clearly, the separation probabilities Pλ,µ(A) only depend on A through the size of
the subsets #A1, . . . ,#Ak, and we shall denote σα

λ,µ := Pλ,µ(A), where α = (#A1, . . . ,#Ak) is a

composition (of size m ≤ n). Note also that σα
λ,µ = σα′

λ,µ whenever the composition α′ is a permu-
tation of the composition α. Below, we focus on the case µ = (n) and we further denote σα

λ := σα
λ,(n).

In this paper, we first express the separation probabilities σα
λ as some coefficients in an explicit

generating function. Using this expression we then prove the following symmetry property: if
α = (α1, . . . , αk) and β = (β1, . . . , βk) are compositions of the same size m ≤ n and of the same
length k, then

σα
λ∏k

i=1 αi!
=

σβ
λ∏k

i=1 βi!
. (1)
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Moreover, for certain partitions λ (including the cases λ = (n) and λ = 2N ) we obtain explicit
expressions for the probabilities σα

λ for certain partitions λ. For instance, the separation probability
σα
(n) for the product of two n-cycles is found to be

σα
(n) =

(n−m)!
∏k

i=1 αi!

(n+ k)(n− 1)!

(
(−1)n−m

(
n−1
k−2

)
(
n+m
m−k

) +

m−k∑

r=0

(−1)r
(
m−k
r

)(
n+r+1

m

)
(
n+k+r

r

)
)
. (2)

This includes the case α = 1k proved by Du and Stanley [11].

Our general expression for the separation probabilities σα
λ is derived using a formula obtained

in [8] about colored factorizations of the n-cycle into two permutations. This formula displays a
symmetry which turns out to be of crucial importance for our method. Our approach can in fact
be made mostly bijective as explained in Section 5. Indeed, the formula obtained in [8] builds on
a bijection established in [9]. An alternative bijective proof was given in [2] and in Section 5 we
explain how to concatenate this bijective proof with the constructions of the present paper.

Outline. In Section 2 we present our strategy for computing the separation probabilities. This
involves counting certain colored factorizations of the n-cycle. We then gather our main results in
Section 3. In particular we prove the symmetry property (1) and obtain formulas for the separa-
tion probabilities σα

λ for certain partitions λ including λ = (n) or when λ = 2N . In Section 4, we
give formulas relating the separation probabilities σα

λ and σα
λ′ when λ′ is a partition obtained from

another partition λ by adding some parts of size 1. In Section 5, we indicate how our proofs could
be made bijective. We gather a few additional remarks in Section 6.

Notation. We denote [n] := {1, 2, . . . , n}. We denote by #S the cardinality of a set S.
A composition of an integer n is a tuple α = (α1, α2, . . . , αk) of positive integer summing to n.

We then say that α has size n and length ℓ(α) = k. An integer partition is a composition such that
the parts αi are in weakly decreasing order. We use the notation λ |= n (resp. λ ⊢ n) to indicate
that λ is a composition (resp. integer partition) of n. We sometime write integer partitions in
multiset notation: writing λ = 1n1 , 2n2 , . . . , jnj means that λ has ni parts equal to i.

We denote bySn the symmetric group on [n]. Given a partition λ of n, we denote by Cλ the set of
permutations in Sn with cycle type λ. It is well known that #Cλ = n!/zλ where zλ =

∏
i i

ni(λ)ni(λ)!
and ni(λ) is the number of parts equal to i in λ.

We shall consider symmetric functions in an infinite number of variables x = {x1, x2, . . .}. For
any sequence of nonnegative integers, α = (α1, α2, . . . , αk) we denote xα := xα1

1 xα2

2 . . . xαk

k . We
denote by [xα]f(x) the coefficient of this monomial in a series f(x). For an integer partition
λ = (λ1, . . . , λk) we denote by pλ(x) and mλ(x) respectively the power symmetric function and

monomial symmetric function indexed by λ (see e.g. [10]). That is, pλ(x) =
∏ℓ(λ)

i=1 pλi
(x) where

pk(x) =
∑

i≥1 x
k
i , and mλ(x) =

∑
α x

α where the sum is over all the distinct sequences α whose
positive parts are {λ1, λ2, . . . , λk} (in any order). Recall that the power symmetric functions form
a basis of the ring of symmetric functions. For a symmetric function f(x) we denote by [pλ(x)]f(x)
the coefficient of pλ(x) of the decomposition of f(x) in this basis.

2 Strategy

In this section, we first translate the problem of determining the separation probabilities σα
λ into

the problem of enumerating certain sets Sα
λ . Then, we introduce a symmetric function Gα

n(x, t)
whose coefficients in one basis are the cardinalities #Sα

λ , while the coefficients in another basis
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count certain “colored” separated factorizations of the permutation (1, . . . , n). Lastly, we give ex-
act counting formulas for these colored separated factorizations. Our main results will follow as
corollaries in Section 3.

For a composition α = (α1, . . . , αk) of size m ≤ n, we denote by Aα
n the set of tuples

A = (A1, . . . , Ak) of pairwise disjoint subsets of [n] with #Ai = αi for all i in [k]. Observe
that #Aα

n =
(

n
α1,α2,...,αk,n−m

)
.

Now, recall from the introduction that σα
λ is the probability for the product of a uniformly

random permutation of cycle type λ with a uniformly random n-cycle to be A-separated for a fixed
tuple A in Aα

n. Alternatively, it can be defined as the probability for the product of a uniformly
random permutation of cycle type λ with a fixed n-cycle to be A-separated for a uniformly random
tuple A in Aα

n (since the only property that matters is that the elements in A are randomly
distributed in the n-cycle).

Definition 1. For an integer partition λ of n, and a composition α of m ≤ n, we denote by Sα
λ the

set of pairs (π,A), where π is a permutation in Cλ and A is a tuple in Aα
n such that the product

π ◦ (1, 2, ..., n) is A-separated.

From the above discussion we obtain for any composition α = (α1, . . . , αk) of size m,

σα
λ =

#Sα
λ(

n
α1,α2,...,αk,n−m

)
#Cλ

. (3)

Enumerating the sets Sα
λ directly seems rather challenging. However, we will show below how

to enumerate a related class of “colored” separated permutations denoted by T α
γ (r). We define a

cycle coloring of a permutation π ∈ Sn in [q] to be a mapping c from [n] to [q] such that if i, j ∈ [n]
belong to the same cycle of π then c(i) = c(j). We think of [q] as the set of colors, and c−1(i) as
set of elements colored i.

Definition 2. Let γ = (γ1, . . . , γℓ) be a composition of size n and length ℓ, and let α = (α1, . . . , αk)
be a composition of size m ≤ n and length k. For a nonnegative integer r we define T α

γ (r) as the
set of quadruples (π,A, c1, c2), where π is a permutation of [n], A = (A1, . . . , Ak) is in Aα

n, and
(i) c1 is a cycle coloring of π in [ℓ] such that there are γi element colored i for all i in [ℓ],
(ii) c2 is a cycle coloring of the product π ◦ (1, 2, . . . , n) in [k + r] such that every color in [k + r]

is used and for all i in [k] the elements in the subset Ai are colored i.

Note that condition (ii) in Definition 2 and the definition of cycle coloring implies that the
product π ◦ (1, 2, . . . , n) is A-separated.

In order to relate the cardinalities of the sets Sα
λ and T α

γ (r), it is convenient to use symmetric
functions (in the variables x = {x1, x2, x3, . . .}). Namely, given a composition α of m ≤ n, we
define

Gα
n(x, t) :=

∑

λ⊢n

pλ(x)
∑

(π,A)∈Sα
λ

texcess(π,A),

where the outer sum runs over all the integer partitions of n, and excess(π,A) is the number of
cycles of the product π ◦ (1, 2, . . . , n) containing none of the elements in A. Recall that the power
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symmetric functions pλ(x) form a basis of the ring of symmetric functions, so that the contribution
of a partition λ to Gα

n(x, t) can be recovered by extracting the coefficient of pλ(x) in this basis:

#Sα
λ = [pλ(x)] G

α
n(x, 1). (4)

As we prove now, the sets T α
γ (r) are related to the coefficients of Gα

n(x, t) in the basis of monomial
symmetric functions.

Proposition 3. If α is a composition of length k, then

Gα
n(x, t+ k) =

∑

γ⊢n

mγ(x)
∑

r≥0

(
t

r

)
#T α

γ (r), (5)

where the outer sum is over all integer partitions of n, and

(
t

r

)
:=

t(t− 1) · · · (t− r + 1)

r!
.

Proof. Since both sides of (5) are polynomial in t and symmetric function in x it suffices to show
that for any nonnegative integer t and any partition γ the coefficient of xγ is the same on both
sides of (5). We first determine the coefficient [xγ ]Gα

n(x, t + k) when t is a nonnegative integer.
Let λ be a partition, and π be a permutation of cycle type λ. Then the symmetric function pλ(x)
can be interpreted as the generating function of the cycle colorings of π, that is, for any sequence
γ = (γ1, . . . , γℓ) of nonnegative integers, the coefficient [xγ ]pλ(x) is the number of cycle colorings
of π such that γi elements are colored i, for all i > 0. Moreover, if π is A-separated for a certain
tuple A = (A1, . . . , Ak) in Aα

n, then (t+ k)excess(S,π) represents the number of cycle colorings of the
permutation π ◦ (1, 2, . . . , n) in [k+ t] (not necessarily using every color) such that for all i ∈ [k] the
elements in the subset Ai are colored i. Therefore, for a partition γ and a nonnegative integer t,
the coefficient [xγ ]Gα

n(x, t+ k) counts the number of quadruples (π,A, c1, c2), where π,A, c1, c2 are
as in the definition of T α

γ (t) except that c2 might actually use only a subset of the colors [k + t].
Note however that all the colors in [k] will necessarily be used by c2, and that we can partition the
quadruples according to the subset of colors used by c2. This gives

[xγ ]Gα
n(x, t+ k) =

∑

r≥0

(
t

r

)
#T α

γ (r).

Now extracting the coefficient of xγ in the right-hand side of (5) gives the same result. This
completes the proof.

In order to obtain an explicit expression for the series Gα
n(x, t) it remains to enumerate the sets

T α
γ (r) which is done below.

Proposition 4. Let r be a nonnegative integer, let α be a composition of size m and length k,
and let γ be a partition of size n ≥ m and length ℓ. Then the set T α

γ (r) specified by Definition 2
has cardinality

#T α
γ (r) =

n(n− ℓ)!(n− k − r)!

(n − k − ℓ− r + 1)!

(
n+ k − 1

n−m− r

)
, (6)

if n− k − ℓ− r + 1 ≥ 0, and 0 otherwise.

The rest of this section is devoted to the proof of Proposition (4). In order to count the
quadruples (π,A, c1, c2) satisfying Definition 2, we shall start by choosing π, c1, c2 before choosing
the tuple A. For compositions γ = (γ1, . . . , γℓ), δ = (δ1, . . . , δℓ′) of n we denote by Bγ,δ the set of
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triples (π, c1, c2), where π is a permutation of [n], c1 is a cycle coloring of π such that γi elements
are colored i for all i ∈ [ℓ], and c2 is a cycle coloring of the permutation π ◦ (1, 2, . . . , n) such that
δi elements are colored i for all i ∈ [ℓ′]. The problem of counting such sets was first considered by

Jackson [5] who actually enumerated the union Bn
i,j :=

⋃

γ,δ|=n, ℓ(γ)=i, ℓ(δ)=j

Bγ,δ using representation

theory. It was later proved in [8] that

#Bγ,δ =
n(n− ℓ)!(n− ℓ′)!

(n − ℓ− ℓ′ + 1)!
, (7)

if n−ℓ−ℓ′+1 ≥ 0, and 0 otherwise. The proof of (7) in [8] uses a refinement of a bijection designed
in [9] in order to prove Jackson’s formula for #Bn

i,j. Another bijective proof of (7) is given in [2],
and we shall discuss it further in Section 5 (a proof of (7) using representation theory can be found
in [12]).

One of the striking features of the counting formula (7) is that it depends on the compositions γ,
δ only through their lengths ℓ, ℓ′. This “symmetry” will prove particularly handy for enumerating
T α
γ (r). Let r, α, γ be as in Proposition 4, and let δ = (δ1, . . . , δk+r) be a composition of n of length

k + r. We denote by T α
γ,δ the set of quadruples (π,A, c1, c2) in T α

γ (r) such that the cycle coloring
c2 has δi elements colored i for all i in [k + r] (equivalently, (π, c1, c2) ∈ Bγ,δ). We also denote

dαδ :=
∏k

i=1

(
δi
αi

)
. It is easily seen that for any triple (π, c1, c2) ∈ Bγ,δ, the number dαδ counts the

tuples A ∈ Aα
n such that (π,A, c1, c2) ∈ T α

γ,δ. Therefore,

#T α
γ (r) =

∑

δ|=n, ℓ(δ)=k+r

#T α
γ,δ =

∑

δ|=n, ℓ(δ)=k+r

dαδ #Bγ,δ,

where the sum is over all the compositions of n of length k + r. Using (7) then gives

#T α
γ (r) =

n(n− ℓ)!(n − k − r)!

(n− k − ℓ− r + 1)!

∑

δ|=n, ℓ(δ)=k+r

dαδ

if n− k − ℓ− r + 1 ≥ 0, and 0 otherwise. In order to complete the proof of Proposition 4, it only
remains to prove the following lemma.

Lemma 5. If α has size m and length k, then

∑

δ|=n, ℓ(δ)=k+r

dαδ =

(
n+ k − 1

n−m− r

)
.

Proof. We give a bijective proof illustrated in Figure 1. One can represent a composition δ =
(δ1, . . . , δk+r) as a sequence of rows of boxes (the ith row has δi boxes). With this representation,
dαδ :=

∏k
i=1

(
δi
αi

)
is the number of ways of choosing αi boxes in the ith row of δ for i = 1, . . . , k. Hence∑

δ|=n, ℓ(δ)=k+r d
α
δ counts α-marked compositions of size n and length k+r, that is, sequences of k+r

non-empty rows of boxes with some marked boxes in the first k rows, with a total of n boxes, and αi

marks in the ith row for i = 1, . . . , k; see Figure 1. Now α-marked compositions of size n and length
k+ r are clearly in bijection (by adding a marked box to each of the rows 1, . . . , k, and marking the
last box of each of the rows k+1, . . . , k+ r) with α′-marked compositions of size n+ k and length
k+ r such that the last box of each row is marked, where α′ = (α1+1, α2+1, . . . , αk +1, 1, 1, . . . , 1)
is a composition of length k+ r. Lastly, these objects are clearly in bijection (by concatenating all
the rows) with sequences of n + k boxes with m + k + r marks, one of which is on the last box.
There are

(
n+k−1
n−m−r

)
such sequences, which concludes the proof of Lemma 5 and Proposition 4.
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Figure 1: A (2, 1, 2)-marked composition of size n = 12 and length 5 and its bijective transformation
into a sequence n + k = 15 boxes with m+ k + r = 5 + 3 + 2 = 10 marks, one of which is on the
last box.

3 Main results

In this section, we exploit Propositions 3 and 4 in order to derive our main results. All the results
in this section will be consequences of the following theorem.

Theorem 6. For any composition α of m ≤ n of length k, the generating function Gα
n(x, t+ k) in

the variables t and x = {x1, x2, . . .} has the following explicit expression in the bases mλ(x) and(
t
r

)
:

Gα
n(x, t+ k) =

n−m∑

r=0

(
t

r

)(
n+ k − 1

n−m− r

) ∑

λ⊢n, ℓ(λ)≤n−k−r+1

n(n− ℓ(λ))!(n − k − r)!

(n − k − r − ℓ(λ) + 1)!
mλ(x). (8)

Moreover, for any partition λ of n, one has #Sα
λ = [pλ(x)]G

α
n(x, 1) and σα

λ =
#Sα

λ(
n

α1,α2,...,αk,n−m

)
#Cλ

.

Theorem 6 is the direct consequence of Propositions 3 and 4. One of the striking features
of (8) is that the expression of Gα

n(x, t + k) depends on α only through its size and length. This
“symmetry property” then obviously also holds for #Sα

λ = [pλ(x)]G
α
n(x, 1), and translates into the

formula (1) for separation probabilities as stated below.

Corollary 7. Let λ be a partition of n, and let α = (α1, . . . , αk) and β = (β1, . . . , βk) be compo-
sitions of the same size m and length k. Then,

#Sα
λ = #Sβ

λ , (9)

or equivalently, in terms of separation probabilities,
σα
λ∏k

i=1 αi!
=

σβ
λ∏k

i=1 βi!
.

We now derive explicit formulas for the separation probabilities for the product of a uniformly
random permutation π, with particular constraints on its cycle type, with a uniformly random
n-cycle. We focus on two constraints: the case where π is required to have p cycles, and the case
where π is a fixed-point-free involution (for n even).

3.1 Case when π has exactly p cycles

Let C(n, p) denote the set of permutations of [n] having p cycles. Recall that the numbers c(n, p) =
#C(n, p) = [xp]x(x + 1)(x + 2) · · · (x + n − 1) are called the signless Stirling numbers of the first
kind. We denote by σα(n, p) the probability that the product of a uniformly random permutation
in C(n, p) with a uniformly random n-cycle is A-separated for a given set A in Aα

n. By a reasoning
similar to the one used in the proof of (3), one gets

σα(n, p) =
1(

n
α1,α2,...,αk ,n−m

)
c(n, p)

∑

λ⊢n,ℓ(λ)=p

#Sα
λ . (10)

We now compute the probabilities σα(n, p) explicitly.

6



Theorem 8. Let α be a composition of m with k parts. Then,

σα(n, p) =
(n−m)!

∏k
i=1 αi!

c(n, p)

n−m∑

r=0

(
1− k

r

)(
n+ k − 1

n−m− r

)
c(n− k − r + 1, p)

(n− k − r + 1)!
, (11)

where c(n, p) are signless Stirling numbers of the first kind.

For instance, Theorem 8 in the case m = n gives the probability that the cycles of the product
of a uniformly random permutation in C(n, p) with a uniformly random n-cycle refine a given set
partition of [n] having blocks of sizes α1, α2, . . . , αk. This probability is found to be

σα(n, p) =

∏k
i=1 αi!

c(n, p)

c(n− k + 1, p)

(n− k + 1)!
.

We now prove Theorem 8. Via (10), this amounts to enumerating Sα(n, p) :=
⋃

λ⊢n,ℓ(λ)=p S
α
λ ,

and using Theorem 6 one gets

#Sα(n, p) =
∑

λ⊢n,ℓ(λ)=p

[pλ(x)]G
α
n(x, 1)

=

n−m∑

r=0

(
1− k

r

)(
n+ k − 1

n−m− r

) n−k−r+1∑

ℓ=1

n(n− ℓ)!(n − k − r)!

(n− k − r − ℓ+ 1)!
A(n, p, ℓ), (12)

whereA(n, p, ℓ) :=
∑

µ⊢n, ℓ(µ)=p

[pµ(x)]
∑

λ⊢n, ℓ(λ)=ℓ

mλ(x). The next lemma gives a formula forA(n, p, ℓ).

Lemma 9. For any positive integers p, ℓ ≤ n

∑

µ⊢n, ℓ(µ)=p

[pµ(x)]
∑

λ⊢n, ℓ(λ)=ℓ

mλ(x) =

(
n− 1

ℓ− 1

)
(−1)ℓ−pc(ℓ, p)

ℓ!
, (13)

where c(a, b) are the signless Stirling numbers of the first kind.

Proof. For this proof we use the principal specialization of symmetric functions, that is, their
evaluation at x = 1a := {1, 1, . . . , 1, 0, 0 . . .} (a ones). Since pγ(1

a) = aℓ(γ) for any positive integer
a, one gets

∑

λ⊢n, ℓ(λ)=ℓ

mλ(1
a) =

n∑

p=1

ap
∑

µ⊢n, ℓ(µ)=p

[pµ(x)]
∑

λ⊢n, ℓ(λ)=ℓ

mλ(x).

The right-hand side of the previous equation is a polynomial in a, and by extracting the coefficient
of ap one gets ∑

µ⊢n, ℓ(µ)=p

[pµ(x)]
∑

λ⊢n, ℓ(λ)=ℓ

mλ(x) = [ap]
∑

λ⊢n, ℓ(λ)=ℓ

mλ(1
a).

Now, for any partition λ, mλ(1
a) counts the a-tuples of nonnegative integers such that the positive

ones are the same as the parts of λ (in some order). Hence
∑

λ⊢n, ℓ(λ)=ℓ

mλ(1
a) counts the a-tuples

of nonnegative integers with ℓ positive ones summing to n. This gives,

∑

λ⊢n, ℓ(λ)=ℓ

mλ(1
a) =

(
n− 1

ℓ− 1

)(
a

ℓ

)
.

Extracting the coefficient of ap gives (13) since [ap]

(
a

ℓ

)
=

(−1)ℓ−p c(ℓ, p)

ℓ!
.
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Using Lemma 9 in (12) gives

#Sα(n, p) = n!

n−m∑

r≥0

(
1− k

r

)(
n+ k − 1

n−m− r

) n−k−r+1∑

ℓ=1

(
n− k − r

ℓ− 1

)
(−1)ℓ−pc(ℓ, p)

ℓ!
, (14)

which we simplify using the following lemma.

Lemma 10. For any nonnegative integer a,

a∑

q=0

(
a

q

)
(−1)q+1−p c(q + 1, p)

(q + 1)!
=

c(a+ 1, p)

(a+ 1)!
.

Proof. The left-hand side equals [xp]
∑a

q=0

(
a
q

)(
x

q+1

)
. Using the Chu-Vandermonde identity this

equals [xp]
(
x+a
a+1

)
which is precisely the right-hand side.

Using Lemma 10 in (14) gives

#Sα(n, p) = n!
n−m∑

r=0

(
1− k

r

)(
n+ k − 1

n−m− r

)
c(n− k − r + 1, p)

(n− k − r + 1)!
, (15)

which is equivalent to (11) via (3). This completes the proof of Theorem 8. �

In the case p = 1, the expression (11) for the probability σα(1) = σα
(n) can be written as a sum

of m− k terms instead. We state this below.

Corollary 11. Let α be a composition of m with k parts. Then the separation probabilities σα
(n)

(separation for the product of two uniformly random n-cycles) are

σα
(n) =

(n−m)!
∏k

i=1 αi!

(n+ k)(n− 1)!

(
(−1)n−m

(
n−1
k−2

)
(
n+m
m−k

) +

m−k∑

r=0

(−1)r
(
m−k
r

)(
n+r+1

m

)
(
n+k+r

r

)
)
.

The equation in Corollary 11, already stated in the introduction, is particularly simple when
m− k is small. For α = 1k (i.e. m = k) one gets the result stated at the beginning of this paper:

σ1k

(n) =

{
1
k! if n− k odd,
1
k! +

2
(k−2)!(n−k+1)(n+k) if n− k even.

(16)

In order to prove Corollary 11 we start with the expression obtained by setting p = 1 in (11):

σα
(n) =

(n−m)!
∏k

i=1 αi!

(n− 1)!

n−m∑

r=0

(
1− k

r

)
1

n− k − r + 1

(
n+ k − 1

n−m− r

)

=
(n−m)!

∏k
i=1 αi!

(n− 1)!
[xn−m](1 + x)1−k

n+k−1∑

r=0

xr

r +m− k + 1

(
n+ k − 1

r

)
. (17)

We now use the following polynomial identity.

Lemma 12. For nonnegative integers a, b, one has the following identity between polynomials in x:

a∑

i=0

xi

i+ b+ 1

(
a

i

)
=

1

(a+ 1)

(
1(

a+b+1
b

)
(−x)b+1

−

b∑

i=0

(
b
i

)
(x+ 1)a+i+1

(
a+i+1

i

)
(−x)i+1

)
. (18)

8



Proof. It is easy to see that the left-hand side of (18) is equal to 1
xb+1

∫ x

0 (1 + t)atbdt. Now this
integral can be computed via integration by parts. By a simple induction on b, this gives the
right-hand side of (18).

Now using (18) in (17), with a = n+ k − 1 and b = m− k, gives

σα
(n) =

(n −m)!
∏k

i=1 αi!

(n + k)(n − 1)!
[xn−m]

(
(1 + x)1−k

(
n+m
m−k

)
(−x)m−k+1

−
m−k∑

r=0

(
m−k
r

)
(1 + x)n+r+1

(
n+k+r

r

)
(−x)r+1

)

=
(n −m)!

∏k
i=1 αi!

(n + k)(n − 1)!

(
(−1)n−m

(
n−1
k−2

)
(
n+m
m−k

) +
m−k∑

r=0

(−1)r
(
m−k
r

)(
n+r+1

m

)
(
n+k+r

r

)
)
.

This completes the proof of Corollary 11. �

3.2 Case when π is a fixed-point-free involution

Given a composition α of m ≤ 2N with k parts, we define

Hα
N (t) :=

∑

(π,A)∈Sα

2N

texcess(π,A),

where excess(π,A) is the number of cycles of the product π ◦ (1, 2, . . . , 2N) containing none of
the elements of A and where π is a fixed-point-free involution of [2N ]. Note that Hα

N (t) =
[p2N (x)]G

α
2N (x, t). We now give an explicit expression for this series.

Theorem 13. For any composition α of m ≤ 2N of length k, the generating series Hα
N (t + k) is

given by

Hα
N (t+ k) = N

min(2N−m,N−k+1)∑

r=0

(
t

r

)(
2N + k − 1

2N −m− r

)
2k+r−N (2N − k − r)!

(N − k − r + 1)!
. (19)

Consequently the separation probabilities for the product of a fixed-point-free involution with a
2N -cycle are given by

σα
2N =

∏k
i=1 αi!

(2N − 1)!(2N − 1)!!

min(2N−m,N−k+1)∑

r=0

(
1− k

r

)(
2N + k − 1

2N −m− r

)
2k+r−N−1 (2N − k − r)!

(N − k − r + 1)!
.

(20)

Remark 14. It is possible to prove Theorem 13 directly using ideas similar to the ones used to
prove Theorem 6 in Section 2. This will be explained in more detail in Section 5. In the proof
given below, we instead obtain Theorem 13 as a consequence of Theorem 6.

The rest of this section is devoted to the proof of Theorem 13. SinceHα
N(t) = [p2N (x)]G

α
2N (x, t),

Theorem 6 gives

Hα
N (t+ k) = (21)

2N−m∑

r=0

(
t

r

)(
2N + k − 1

2N −m− r

)N−k−r+1∑

s=0

2N(N − s)!(2N − k − r)!

(N − k − r − s+ 1)!
[p2N (x)]

∑

λ⊢2N, ℓ(λ)=N+s

mλ(x).

We then use the following result.
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Lemma 15. For any nonnegative integer s ≤ N ,

[p2N (x)]
∑

λ⊢2N, ℓ(λ)=N+s

mλ(x) =
(−1)s

2ss!(N − s)!
.

Proof. For partitions λ, µ of n, we denote Sλ,µ = [pλ(x)]mµ(x) and Rλ,µ = [mλ(x)]pµ(x). The
matrices S = (Sλ,µ)λ,µ⊢n andR = (Rλ,µ)λ,µ⊢n are the transition matrices between the bases {pλ}λ,⊢n
and {mλ}λ⊢n of symmetric functions of degree n, hence S = R−1. Moreover the matrix R is
easily seen to be lower triangular in the dominance order of partitions, that is, Rλ,µ = 0 unless
λ1 + λ2 + · · ·+ λi ≤ µ1 +µ2 + · · ·+µi for all i ≥ 1 ([10, Prop. 7.5.3]). Thus the matrix S = R−1 is
also lower triangular in the dominance order. Since the only partition of 2N of length N + s that
is not larger than the partition 2N in the dominance order is 12s2N−s, one gets

[p2N (x)]
∑

λ⊢2N, ℓ(λ)=N+s

mλ(x) = [p2N (x)]m12s2N−s(x). (22)

To compute this coefficient we use the standard scalar product 〈·, ·〉 on symmetric functions (see
e.g. [10, Sec. 7]) defined by 〈pλ, pµ〉 = zλ if λ = µ and 0 otherwise, where zλ was defined at the
end of Section 1. From this definition one immediately gets

[p2N ]m12s2N−s =
1

z2N
〈p2N ,m12s2N−s〉 =

1

N !2N
〈p2N ,m12s2N−s〉. (23)

Let {hλ} denote the basis of the complete symmetric functions. It is well known that 〈hλ,mµ〉 = 1
if λ = µ and 0 otherwise, therefore 〈p2N ,m12s2N−s〉 = [h12s2N−s ]p2N . Lastly, since p2N = (p2)

N and
p2 = 2h2 − h21 one gets

〈p2N ,m12s2N−s〉 = [h12s2N−s ]p2N = [h2s1 hN−s
2 ] (2h2 − h21)

N = 2N−s(−1)s
(
N

s

)
. (24)

Putting together (22), (23) and (24) completes the proof.

By Lemma 15, Equation (21) becomes

Hα
N (t+ k) =

2N−m∑

r=0

(
t

r

)(
2N + k − 1

2N −m− r

)N−k−r+1∑

s=0

2N(N − s)!(2N − k − r)!

(N − k − r − s+ 1)!

(−1)s

2ss!(N − s)!

= 2N
2N−m∑

r=0

(
t

r

)(
2N + k − 1

2N −m− r

)
(2N − k − r)!

(N − k − r + 1)!

N−k−r+1∑

s=0

(
N − k − r + 1

s

)
(−1)s

2s

= 2N

min(2N−m,N−k+1)∑

r=0

(
t

r

)(
2N + k − 1

2N −m− r

)
(2N − k − r)!

(N − k − r + 1)!

1

2N−k−r+1
,

where the last equality uses the binomial theorem. This completes the proof of Equation (19).
Equation (20) then immediately follows from the case t = 1− k of (19) via (3). This completes the
proof of Theorem 13. �

4 Adding fixed points to the permutation π

In this section we obtain a relation between the separation probabilities σα
λ and σα

λ′ , when the
partition λ′ is obtained from λ by adding some parts of size 1. Our main result is given below.
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Theorem 16. Let λ be a partition of n with parts of size at least 2 and let λ′ be the partition
obtained from λ by adding r parts of size 1. Then for any composition α = (α1, . . . , αk) of m ≤ n+r
of length k,

#Sα
λ′ =

m−k∑

p=0

(
n+ p

n

(
n+m+ r − p

n+m

)
+

m− p

n

(
n+m+ r − p− 1

n+m

))(
m− k

p

)
#S

(m−k−p+1,1k−1)
λ .

(25)
Equivalently, in terms of separation probabilities,

σα
λ′ =

n!(
n+r

α1,...,αk,n+r−m

)(
n+r
r

)
m−k∑

p=0

(
n+p
n

(
n+m+r−p

n+m

)
+ m−p

n

(
n+m+r−p−1

n+m

)) (
m−k
p

)

(n−m+ p)!(m− k − p+ 1)!
σ
(m−k−p+1,1k−1)
λ .

(26)

For instance, when α = 1k Theorem 16 gives

σ1k

λ′ =

(
n+r−k

r

)
(
n+r
r

)2
((

n+ r + k

n+ k

)
+

k

n

(
n+ r + k − 1

n+ k

))
σ1k

λ .

The rest of the section is devoted to proving Theorem 16. Observe first that (26) is a simple
restatement of (25) via (3) (using the fact that #Cλ′ =

(
n+r
n

)
#Cλ). Thus it only remains to

prove (25), which amounts to enumerating Sα
λ′ . For this purpose, we will first define a mapping

Ψ from Sα
λ′ to Ŝα

λ , where Ŝα
λ is a set closely related to Sα

λ . We shall then count the number of

preimages of each element in Ŝα
λ under the mapping Ψ. Roughly speaking, if (π′, A) is in Sα

λ′ and
the tuple A = (A1, . . . , Ak) is thought as “marking” some elements in the cycles of the permutation
ω = π′ ◦ (1, 2, . . . , n+ r), then the mapping Ψ simply consists in removing all the fixed points of π′

from the cycle structure of ω and transferring their “marks” to the element preceding them in the
cycle structure of ω.

We introduce some notation. A multisubset of [n] is a function M which associates to each
integer i ∈ [n] its multiplicity M(i) which is a nonnegative integer. The integer i is said to be in the
multisubsetM ifM(i) > 0. The size ofM is the sum of multiplicities

∑n
i=1 M(i). For a composition

α = (α1, . . . , αk), we denote by Âα
n the set of tuples (M1, . . . ,Mk) of disjoint multisubsets of [n]

(i.e., no element i ∈ [n] is in more than one multisubset) such that the multisubset Mj has size αj

for all j ∈ [k]. For M = (M1, . . . ,Mk) in Âα
n we say that a permutation π of [n] is M -separated if

no cycle of π contains elements of more than one of the multisubsets Mj . Lastly, for a partition λ
of n we denote by Ŝα

λ the set of pairs (π,M) where π is a permutation in Cλ, and M is a tuple in

Âα
n such that the product π ◦ (1, 2, . . . , n) is M -separated.
We now set λ, λ′, α, k,m, n, r to be as in Theorem 16, and define a mapping Ψ from Sα

λ′ to Ŝα
λ .

Let π′ be a permutation of [n + r] of cycle type λ′, and let e1 < e2 < · · · < en ∈ [n + r] be the
elements not fixed by π′. We denote ϕ(π′) the permutation π defined by setting π(i) = π(j) if
π′(ei) = ej . Observe that π has cycle type λ.

Remark 17. If e1 < e2 < · · · < en ∈ [n+ r] are the elements not fixed by π′ and π = ϕ(π′), then
the cycle structure of the permutation π′ ◦ (1, 2, . . . , n + r) is obtained from the cycle structure of
π ◦ (1, 2, . . . , n) by replacing each element i ∈ [n − 1] by the sequence of elements Fi = ei, ei +
1, ei+2, . . . , ei+1−1, and replacing the element n by the sequence of elements Fn = en, en+1, en+
2, . . . , n+ r, 1, 2, . . . , e1− 1. In particular, the permutations π ◦ (1, 2, . . . , n) and π′ ◦ (1, 2, . . . , n+ r)
have the same number of cycles.
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Now given a pair (π′, A) in Sα
λ′ , where A = (A1, . . . , Ak), we consider the pair Ψ(π′, A) = (π,M),

where π = ϕ(π′) and M = (M1, . . . ,Mk) is a tuple of multisubsets of [n] defined as follows: for all
j ∈ [k] and all i ∈ [n] the multiplicity Mj(i) is the number of elements in the sequence Fi belonging
to the subset Aj (where the sequence Fi is defined as in Remark 17). It is easy to see that Ψ is a
mapping from Sα

λ′ to Ŝα
λ .

We are now going to evaluate #Sα
λ′ by counting the number of preimages of each element in Ŝα

λ

under the mapping Ψ. As we will see now, the number of preimages of a pair (π,M) in Ŝα
λ only

depends on M .

Lemma 18. Let (π,M) ∈ Ŝα
λ , where M = (M1, . . . ,Mk). Let s be the number of distinct elements

appearing in the multisets M1, . . . ,Mk, and let x =
∑k

j=1Mj(n) be the multiplicity of the integer n.
Then the number of preimages of the pair (π,M) under the mapping Ψ is

#Ψ−1(π,M) =





(
n+ r + s

n+m

)
if x = 0,

x

(
n+ r + s

n+m

)
+

(
n+ r + s− 1

n+m

)
otherwise.

(27)

Proof. We adopt the notation of Remark 17, and for all i ∈ [n] we denote M∗(i) =
∑k

j=1Mj(i)
the multiplicity of the integer i. In order to construct a preimage (π′, A) of (π,M), where A =
(A1, . . . , Ak), one has to
(i) choose for all i ∈ [n] the length fi > 0 of the sequence Fi (with

∑n
i=1 fi = n+ r),

(ii) choose the position b ∈ [fn] corresponding to the integer n+ r in the sequence Fn,
(iii) if Mj(i) > 0 for some i ∈ [n] and j ∈ [k], then choose which Mj(i) elements in the sequence

Fi are in the subset Aj .
Indeed, the choices (i), (ii) determine the permutation π′ ∈ Cλ′ (since they determine the fixed-
points of π′, which is enough to recover π′ from π), while by Remark 17 the choice (iii) determines
the tuple of subsets A = (A1, . . . , Ak).

We will now count the number ways of making the choices (i), (ii), (iii) by encoding such choices
as rows of (marked and unmarked) boxes as illustrated in Figure 2. We treat separately the cases
x = 0 and x 6= 0. Suppose first x = 0. To each i ∈ [n] we associate a row of boxes Ri encoding the
choices (i), (ii), (iii) as follows:
(1) if i 6= n and M∗(i) = 0, then the row Ri is made of fi boxes, the first of which is marked,
(2) if i 6= n and M∗(i) > 0, then the row Ri is made of fi + 1 boxes, with the first box being

marked and M∗(i) other boxes being marked (the marks represent the choice (iii)),
(3) the row Rn is made of fn + 1 boxes, with the first box being marked and an additional box

being marked and called special marked box (this box represents the choice (ii)).
There is no loss of information in concatenating the rows R1, R2, . . . , Rn given that M is known
(indeed the row Ri starts at the (i +Ni)th marked box, where Ni =

∑
h<iM∗(h) ). This concate-

nation results in a row of n + r + s + 1 boxes with n + m + 1 marks such that the first box is
marked and the last mark is “special”; see Figure 2. Moreover there are

(
n+r+s
n+m

)
such rows of boxes

and any of them can be obtained for some choices of (i), (ii), (iii). This proves the case x = 0 of
Lemma 18.

We now suppose x > 0. We reason similarly as above but there are now two possibilities for the
row Rn, depending on whether or not the integer n+ r belongs to one of the subsets A1, . . . , Ak. In
order to encode a preimage such that n+ r belong to one of the subsets A1, . . . , Ak the condition
(3) above must be changed to
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R1 (f1 = 4) R2 (f2 = 2) R3 (f3 = 2) R4 (f4 = 5) R5 (f5 = 1) R6 (f6 = 3, x = 0)

Figure 2: Example of choices (1),(2),(3) encoded by a sequence of boxes, some of which being
marked (indicated in gray), with one mark being special (indicated with a cross). Here n = 6,
k = 2, r = 11, x = 0 and the multisubsets M1,M2 are defined by M1(1) = 1, M2(3) = 1,
M1(4) = 3, and Mj(i) = 0 for the other values of i, j.

(3’) the row Rn is made of fn+1 boxes, with the first box being marked and x other boxes being
marked, one of which being called special marked box.

In this case, concatenating the rows R1, R2, . . . , Rn gives a row of n + r + s boxes with n + m
marks, with the first box being marked and one of the x last marked boxes being special. There
are x

(
n+r+s−1
n+m−1

)
such rows and each of them comes from a unique choice of (i), (ii) and (iii).

Lastly, in order to encode a preimage such that n + r does not belong to one of the subsets
A1, . . . , Ak the condition (3) above must be changed to
(3”) the row Rn is made of fn + 1 boxes, with the first box being marked and x + 1 other boxes

being marked, one of which being called special marked box.
In this case, concatenating the rows R1, R2, . . . , Rn gives a row of n + r + s boxes with n+m+ 1
marks, with the first box being marked and one of the x+1 last marked boxes being special. There
are (x+ 1)

(
n+r+s−1

n+m

)
such rows and each of them comes from a unique choice of (i), (ii) and (iii).

Thus, in the case x > 0 one has

#Ψ−1(π,M) = x

(
n+ r + s− 1

n+m− 1

)
+ (x+ 1)

(
n+ r + s− 1

n+m

)
= x

(
n+ r + s

n+m

)
+

(
n+ r + s− 1

n+m

)
.

This completes the proof of Lemma 18.

We now complete the proof of Theorem 16. For any composition γ = (γ1, . . . , γk), we denote by
Ŝα,γ
λ the set of pairs (π,M) in Ŝα

λ , where the tuple M = (M1, . . . ,Mk) is such that for all j ∈ [k]
the multisubset Mj (which is of size αj) contains exactly γj distinct elements. Summing (27) gives

∑

(π,M)∈Ŝα,γ
λ

#Ψ−1(π,M) =

(
(E(X) + P(X = 0))

(
n+ r + |γ|

n+m

)
+ P(X > 0)

(
n+ r + |γ| − 1

n+m

))
#Ŝα,γ

λ ,

(28)
where X is the random variable defined as X =

∑k
j=1Mj(n) for a pair (π,M) chosen uniformly

randomly in Ŝα,γ
λ , E(X) is the expectation of this random variable, and P(X > 0) = 1− P(X = 0)

is the probability that X is positive.

Lemma 19. With the above notation, E(X) =
m

n
, and P(X > 0) =

|γ|

n
.

Proof. The proof is simply based on a cyclic symmetry. For i ∈ [n] we consider the random variable
Xi =

∑k
j=1Mj(i) for a pair (π,M) chosen uniformly randomly in Ŝα,γ

λ . It is easy to see that all the

variables X1, . . . ,Xn = X are identically distributed since the set Ŝα,γ
λ is unchanged by cyclically

shifting the value of the integers 1, 2, . . . , n in pairs (π,M) ∈ Ŝα,γ
λ . Therefore,

nE(X) =

n∑

i=1

E(Xi) = E

(
n∑

i=1

Xi

)
= E(m) = m,
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and

nP(X > 0) =

n∑

i=1

P(Xi > 0) = E

(
n∑

i=1

1Xi>0

)
= E (|γ|) = |γ|.

We now enumerate the set Ŝα,γ
λ . Observe that any pair (π,M) in Ŝα,γ

λ can be obtained (in a
unique way) from a pair (π,A) in Sγ

λ by transforming A = (A1, . . . , Ak) into M = (M1, . . . ,Mk) as
follows: for each j ∈ [k] one has to assign a positive multiplicity Mj(i) for all i ∈ Aj so as to get a
multisubset Mj of size αj . There are

(
αj−1
γj−1

)
ways of performing the latter task, hence

#Ŝα,γ
λ =

k∏

i=1

(
αi − 1

γi − 1

)
#Sγ

λ .

Using this result and Lemma 19 in (28) gives

∑

(π,M)∈Ŝα,γ

λ

#Ψ−1(π,M) =

(
m+ n− |γ|

n

(
n+ r + |γ|

n+m

)
+

|γ|

n

(
n+ r + |γ| − 1

n+m

)) k∏

i=1

(
αi − 1

γi − 1

)
#Sγ

λ .

Observe that the above expression is 0 unless γ is less or equal to α componentwise. Finally, one
gets

#Sα
λ′ =

∑

γ≤α, ℓ(γ)=k

(
m+ n− |γ|

n

(
n+ r + |γ|

n+m

)
+

|γ|

n

(
n+ r + |γ| − 1

n+m

)) k∏

i=1

(
αi − 1

γi − 1

)
#Sγ

λ , (29)

where the sum is over compositions γ with k parts, which are less or equal to α componentwise.
Lastly, by Corollary 7, the cardinality #Sγ

λ′ only depends on the composition α through the length
and size of α. Therefore, one can use (29) with α = (m−k+1, 1k−1), in which case the compositions
γ appearing in the sum are of the form γ = (m− k − p+ 1, 1k−1) for some p ≤ m− k. This gives
(25) and completes the proof of Theorem 16. �

5 Bijective proofs and interpretation in terms of maps

In this section we explain how certain results of this paper can be interpreted in terms of maps,
and can be proved bijectively. In particular, we shall interpret the sets T α

γ,δ of “separated colored
factorizations” (defined in Section 2) in terms of maps. We can then extend a bijection from [1] in
order to prove bijectively the symmetry property stated in Corollary 7.

5.1 Interpretations of (separated) colored factorizations in terms of maps

We first recall some definitions about maps. Our graphs are undirected, and they can have multiple
edges and loops. Our surfaces are two-dimensional, compact, boundaryless, orientable, and con-
sidered up to homeomorphism; such a surface is characterized by its genus. A connected graph is
cellularly embedded in a surface if its edges are not crossing and its faces (connected components of
the complement of the graph) are simply connected. A map is a cellular embedding of a connected
graph in an orientable surface considered up to homeomorphism. A map is represented in Figure 3.
By cutting an edge in its midpoint one gets two half-edges. A map is rooted if one of its half-edges
is distinguished as the root. In what follows we shall consider rooted bipartite maps, and consider
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(a) (b)

Figure 3: (a) A rooted bipartite one-face map. (b) A rooted bipartite tree-rooted map (the spanning
tree is indicated by thick lines). The root half-edge is indicated by an arrow.

the unique proper coloring of the vertices in black and white such that the root half-edge is incident
to a black vertex.

By a classical encoding (see e.g. [6]), for any partitions λ, µ of n, the solutions (π1, π2) ∈ Cλ×Cµ
of the equation π1 ◦ π2 = (1, 2, . . . , n) are in bijection with the rooted one-face bipartite maps such
that black and white vertices have degrees given by the permutations λ and µ respectively. That
is, the number of black (resp. white) vertices of degree i is equal to the number of parts of the
partition λ (resp. µ) equal to i. Let γ = (γ1, . . . , γℓ), δ = (δ1, . . . , δℓ′) be compositions of n and
let α = (α1, . . . , αk) be a composition of m ≤ n. A rooted bipartite map is (γ, δ)-colored if its
black vertices are colored in [ℓ] (that is, every vertex is assigned a “color” in [ℓ]) in such a way
that γi edges are incident to black vertices of color i, and its white vertices are colored in [ℓ′] in
such a way that δi edges are incident to white vertices of color i. Through the above mentioned
encoding, the set Bγ,δ of colored factorizations of the n-cycles defined in Section 2 corresponds
to the set of (γ, δ)-colored rooted bipartite one-face maps. Similarly, the sets T α

γ,δ of “separated
colored factorizations” corresponds to the set of (γ, δ)-colored rooted bipartite one-face maps with
some marked edges, such that for all i ∈ [k] exactly αi marked edges are incident to white vertices
colored i.

The results in this paper can then be interpreted in terms of maps. For instance, one can
interpret (8) in the case m = k = 0 (no marked edges) as follows:

∑

λ⊢n

∑

M∈Bλ

pλ(x) t
#white vertices = G∅

n(x, t) =
n∑

r=1

∑

λ⊢n, ℓ(λ)≤n−r+1

mλ(x)

(
t

r

)
n(n− ℓ(λ))!(n − r)!

(n − r − ℓ(λ) + 1)!

(
n− 1

n− r

)
,

where Bλ is the set of rooted bipartite one-face maps such that black vertices have degrees given
by the partition λ. The results in Subsection 3.2 can also be interpreted in terms of general (i.e.,
non-necessarily bipartite) maps. Indeed, the set MN = B2N can be interpreted as the set of general
rooted one-face maps with N edges (because a bipartite map in which every black vertex has degree
two can be interpreted as a general map upon contracting the black vertices). Therefore one can
interpret (19) in the case m = k = 0 (no marked edges) as follows:

∑

M∈MN

t#vertices = H∅
N (t) = N

N+1∑

r=1

(
t

r

)
2r−N (2N − r)!

(N − r + 1)!

(
2N − 1

2N − r

)
. (30)

This equation is exactly the celebrated Harer-Zagier formula [4].

5.2 Bijection for separated colored factorizations, and symmetry

In this section, we explain how some of our proofs could be made bijective. In particular we will
use bijective results obtained in [1] in order to prove the symmetry result stated in Corollary 7.
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We first recall the bijection obtained in [1] about the sets Bγ,δ. We define a tree-rooted map to
be a rooted map with a marked spanning tree; see Figure 3(b). We say that a bipartite tree-rooted
map is (ℓ, ℓ′)-labelled if it has ℓ black vertices labelled with distinct labels in [ℓ], and ℓ′ white vertices
labelled with distinct labels in [ℓ′]. It was shown in [1] that for any compositions γ = (γ1, . . . , γℓ),
δ = (δ1, . . . , δℓ′) of n, the set Bγ,δ is in bijection with the set of (ℓ, ℓ′)-labelled bipartite tree-rooted
maps such that the black (resp. white) vertex labelled i has degree γi (resp. δi).

From this bijection, it is not too hard to derive the enumerative formula (7) (see Remark 21).
We now adapt the bijection established in [1] to the sets T α

γ,δ of “separated colored factorizations”.
For a composition α = (α1, . . . , αk), a (ℓ, ℓ′)-labelled bipartite maps is said to be α-marked if αi

edges incident to the white vertex labelled i are marked for all i in [k].

Theorem 20. The bijection in [1] extends into a bijection between the set T α
γ,δ and the set of

α-marked (ℓ, ℓ′)-labelled bipartite tree-rooted maps with n edges such that the black (resp. white)
vertex labelled i has degree γi (resp. δi).

We will now show that the bijection given by Theorem 20 easily implies

#T α
γ (r) = #T β

γ (r), (31)

whenever the compositions α and β have the same length and size. Observe that, in turn, (31)
readily implies Corollary 7.

By Theorem 20, the set T α
γ (r) specified by Definition 2 is in bijection with the set T̃ α

γ (r) of
α-marked (ℓ, k + r)-labelled bipartite tree-rooted maps with n edges such that the black vertex

labelled i has degree γi. We will now describe a bijection between the sets T̃ α
γ (r) and T̃ β

γ (r) when
α and β have the same length and size. For this purpose it is convenient to interpret maps as graphs
endowed with a rotation system. A rotation system of a graph G is an assignment for each vertex
v of G of a cyclic ordering of the half-edges incident to v. Any map M defines a rotation system
ρ(M) of the underlying graph: the cyclic orderings are given by the clockwise order of the half-
edges around the vertices. This correspondence is in fact bijective (see e.g. [7]): for any connected
graph G the mapping ρ gives a bijection between maps having underlying graph G and the rotation
systems of G. Using the “rotation system” interpretation, any map can be represented in the plane
(with edges allowed to cross each other) by choosing the clockwise order of the half-edges around
each vertex to represent the rotation system; this is the convention used in Figures 4 and 5.

3 3 4

5

4

3 2

1

2 *

*

*

*

3 3

2

1

*

5 1 5

4

1

*

5 1

*

ϕ1,3

* *

4

2

*

e3

e1

e
′

1

Figure 4: Left: a (3, 1, 1)-marked (4, 5)-labelled bipartite tree-rooted map. Right: the (2, 1, 2)-
marked (4, 5)-labelled bipartite tree-rooted map obtained by applying the mapping ϕ1,3. In this
figure, maps are represented using the “rotation system interpretation”, so that the edge-crossings
are irrelevant. The spanning trees are drawn in thick lines, the marked edges are indicated by stars,
and the root half-edge is indicated by an arrow.
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We now prove (31) it is sufficient to establish a bijection between the sets T̃ α
γ (r) and T̃ β

γ (r) in
the case α = (α1, . . . , αk), β = (β1, . . . , βk) with βi = αi − 1, βj = αj + 1 and αs = βs for s 6= i, j.
Let M be an α-marked (ℓ, ℓ′)-labelled bipartite tree-rooted map. We consider the path joining the
white vertices i and j in the spanning tree of M . Let ei and ej be the edges of this path incident to
the white vertices i and j respectively; see Figure 4. We consider the first marked edge e′i following
ei in clockwise order around the vertex i (note that ei 6= e′i since αi = βi + 1 > 1). We then
define ϕi,j(M) as the map obtained by ungluing from the vertex i the half-edge of e′i as well as all
the half-edges appearing strictly between ei and e′i, and gluing them (in the same clockwise order)
in the corner following ej clockwise around the vertex j. Figure 4 illustrates the mapping ϕ1,3.
It is easy to see that ϕi,j(M) is a tree-rooted map, and that ϕi,j and ϕj,i are reverse mappings.

Therefore ϕi,j(M) is a bijection between T̃ α
γ (r) and T̃ β

γ (r). This proves (31).

Remark 21. By an argument similar to the one used above to prove (31), one can prove that
if γ, γ′, δ, δ′ are compositions of n such that ℓ(γ) = ℓ(γ′) and ℓ(δ) = ℓ(δ′) then Bγ,δ = Bγ′,δ′

(this is actually done in a more general setting in [2]). From this property one can compute the
cardinality of Bγ,δ by choosing the most convenient compositions γ, δ of length ℓ and ℓ′. We take
γ = (n − ℓ + 1, 1, 1, . . . , 1) and δ = (n − ℓ′ + 1, 1, 1, . . . , 1), so that #Bγ,δ is the number of (ℓ, ℓ′)-
labelled bipartite tree-rooted maps with the black and white vertices labelled 1 of degrees n− ℓ+1
and n−ℓ′+1 respectively, and all the other vertices of degree 1. In order to construct such an object
(see Figure 5), one must choose the unrooted plane tree (1 choice), the labelling of the vertices

((ℓ−1)!(ℓ′−1)! choices), the n−ℓ−ℓ′+1 edges not in the tree (
(

n−ℓ
n−ℓ−ℓ′+1

)(
n−ℓ′

n−ℓ−ℓ′+1

)
(n−ℓ′−ℓ′+1)!

choices), and lastly the root (n choices). This gives (7).

2

1

3

2

4

1

4

3

3

Figure 5: A tree-rooted map in Bγ,δ, where γ = (8, 1, 1, 1, 1), δ = (9, 1, 1, 1). Here the map is
represented using the “rotation system interpretation”, so that the edge-crossings are irrelevant.

5.3 A direct proof of Theorem 13

In Section 3 we obtained Theorem 13 as a consequence of Theorem 6. Here we explain how to
obtain it directly.

First of all, by a reasoning identical to the one used to derive (5) one gets

Hα
N(t+ k) =

2N−m∑

r=0

(
t

r

)
#Uα(r), (32)

where Uα(r) is the set of triples (π,A, c2) where π is a fixed-point free involution of [2N ], A is in
Aα

n and c2 is a a cycle coloring of the product π ◦ (1, 2, . . . , 2N) in [k + r] such that every color in
[k + r] is used and for all i in [k] the elements in the subset Ai are colored i.

In order to enumerate Uα(r) one considers for each composition γ = (γ1, . . . , γℓ) the set Mγ

of pairs (π, c2), where π is a fixed-point-free involution of [2N ] and c2 is a cycle coloring of the
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permutation π ◦ (1, 2, . . . , 2N) such that γi elements are colored i for all i ∈ [ℓ]. One then uses the
following analogue of (7):

#Mγ =
N(2N − ℓ)!

(N − ℓ+ 1)!
2ℓ−N . (33)

Using this result in conjunction with Lemma 5, one then obtains the following analogue of (6):

#Uα(r) =
N(2N − k − r)!

(N − k − r + 1)!

(
2N + k − 1

2N −m− r

)
.

Plugging this result in (32) completes the proof of Theorem 13.

Similarly as (7), Equation (33) can be obtained bijectively. Indeed by a classical encoding, the
set Mγ is in bijection with the set of rooted one-face maps with vertices colored in [ℓ] in such a
way that for all i ∈ [ℓ], there are exactly γi half-edges incident to vertices of color i. Using this
interpretation, it was proved in [1] that the set Mγ is in bijection with the set of tree-rooted maps
with ℓ vertices labelled with distinct labels in [ℓ] such that the vertex labelled i has degree γi. The
latter set is easy to enumerate (using symmetry as in Remark 21) and one gets (33).

6 Concluding remarks: strong separation and connection coeffi-
cients

Given a tuple A = (A1, . . . , Ak) of disjoint subsets of [n], a permutation π is said to be strongly
A-separated if each of the subsets Ai, for i ∈ [k] is included in a distinct cycle of π. Given a
partition λ of n and a composition α of m ≤ n, we denote by πα

λ the probability that the product
ω ◦ ρ is strongly A-separated, where ω (resp. ρ) is a uniformly random permutation of cycle type λ
(resp. (n)) and A is a fixed tuple in Aα

n. In particular, for a composition α of size m = n, one gets

πα
λ =

Kα
λ,(n)

∏k
i=1(αi − 1)!

(n− 1)! #Cλ
,

where Kα
λ,(n) is the connection coefficient of the symmetric group counting the number of solutions

(ω, ρ) ∈ Cλ × C(n), of the equation ω ◦ ρ = φ where φ is a fixed permutation of cycle type α.
We now argue that the separation probabilities {σα

λ}α|=m computed in this paper are enough
to determine the probabilities {πα

λ}α|=m. Indeed, it is easy to prove that

σα
λ =

∑

β�α

Rα,βπ
β
λ , (34)

where the sum is over the compositions β = (β1, . . . , βℓ) of size m = |α| such that there exists
0 = j0 < j1 < j2 < · · · < jk = ℓ such that (βji−1+1, βji−1+1, . . . , βji) is a composition of αi for all

i ∈ [k], and Rα,β =
∏k

i=1 Ri where Ri is the number of ways of partitioning a set of size αi into
blocks of respective sizes βji−1+1, βji−1+1, . . . , βji . Moreover, the matrix (Rα,β)α,β|=m is invertible
(since the matrix is upper triangular for the lexicographic ordering of compositions). Thus, from
the separation probabilities {σα

λ}α|=m one can deduce the strong separation probabilities {πα
λ}α|=m

and in particular, for m = n, the connection coefficients Kα
λ,(n) of the symmetric group.
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