3,950 research outputs found

    The long-term evolution of the X-ray pulsar XTE J1814-338: a receding jet contribution to the quiescent optical emission?

    Full text link
    We present a study of the quiescent optical counterpart of the Accreting Millisecond X-ray Pulsar XTE J1814-338, carrying out multiband (BVR) orbital phase-resolved photometry using the ESO VLT/FORS2. The optical light curves are consistent with a sinusoidal variability modulated with the orbital period, showing evidence for a strongly irradiated companion star, in agreement with previous findings. The observed colours cannot be accounted for by the companion star alone, suggesting the presence of an accretion disc during quiescence. The system is fainter in all analysed bands compared to previous observations. The R band light curve displays a possible phase offset with respect to the B and V band. Through a combined fit of the multi-band light curves we derive constraints on the companion star and disc fluxes, on the system distance and on the companion star mass. The irradiation luminosity required to account for the observed day-side temperature of the companion star is consistent with the spin-down luminosity of a millisecond radio pulsar. The flux decrease and spectral evolution of the quiescent optical emission observed comparing our data with previous observations, collected over 5 years, cannot be well explained with the contribution of an irradiated companion star and an accretion disc alone. The progressive flux decrease as the system gets bluer could be due to a continuum component evolving towards a lower, bluer spectrum. While most of the continuum component is likely due to the disc, we do not expect it to become bluer in quiescence. Hence we hypothesize that an additional component, such as synchrotron emission from a jet was contributing significantly in the earlier data obtained during quiescence and then progressively fading or moving its break frequency toward longer wavelengths.Comment: 7 pages, 8 figures, accepted for publication in Section 7. Stellar structure and evolution of Astronomy and Astrophysic

    Properties of the redback millisecond pulsar binary 3FGL J0212.1+5320

    Get PDF
    Linares et al. (2016) obtained quasi-simultaneous g', r' and i-band light curves and an absorption line radial velocity curve of the secondary star in the redback system 3FGL J0212.1+5320. The light curves showed two maxima and minima primarily due to the secondary star's ellipsoidal modulation, but with unequal maxima and minima. We fit these light curves and radial velocities with our X-ray binary model including either a dark solar-type star spot or a hot spot due to off-centre heating from an intrabinary shock, to account for the unequal maxima. Both models give a radial velocity semi-amplitude and rotational broadening that agree with the observations. The observed secondary star's effective temperature is best matched with the value obtained using the hot spot model, which gives a neutron star and secondary star mass of M1M_{\rm 1}=1.850.26+0.32^{+0.32}_{-0.26} MM_{\odot}and M2M_{\rm 2}=0.500.19+0.22^{+0.22}_{-0.19} MM_{\odot}, respectively.Comment: 10 pages, 8 figues, accepted by MNRA

    Observations of Doppler Boosting in Kepler Lightcurves

    Get PDF
    Among the initial results from Kepler were two striking lightcurves, for KOI 74 and KOI 81, in which the relative depths of the primary and secondary eclipses showed that the more compact, less luminous object was hotter than its stellar host. That result became particularly intriguing because a substellar mass had been derived for the secondary in KOI 74, which would make the high temperature challenging to explain; in KOI 81, the mass range for the companion was also reported to be consistent with a substellar object. We re-analyze the Kepler data and demonstrate that both companions are likely to be white dwarfs. We also find that the photometric data for KOI 74 show a modulation in brightness as the more luminous star orbits, due to Doppler boosting. The magnitude of the effect is sufficiently large that we can use it to infer a radial velocity amplitude accurate to 1 km/s. As far as we are aware, this is the first time a radial-velocity curve has been measured photometrically. Combining our velocity amplitude with the inclination and primary mass derived from the eclipses and primary spectral type, we infer a secondary mass of 0.22+/-0.03 Msun. We use our estimates to consider the likely evolutionary paths and mass-transfer episodes of these binary systems.Comment: 8 pages, 4 figures, ApJ 715, 51 (v4 is updated to match the published version, including a note added in proof with measured projected rotational velocities)

    Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    Get PDF
    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified gamma-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modelling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of gamma-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.Comment: 11 pages, 5 tables, 1 figure, 4 online tables. ApJ submitted and referee

    Stress response function of a two-dimensional ordered packing of frictional beads

    Full text link
    We study the stress profile of an ordered two-dimensional packing of beads in response to the application of a vertical overload localized at its top surface. Disorder is introduced through the Coulombic friction between the grains which gives some indeterminacy and allows the choice of one constrained random number per grain in the calculation of the contact forces. The so-called `multi-agent' technique we use, lets us deal with systems as large as 1000×10001000\times1000 grains. We show that the average response profile has a double peaked structure. At large depth zz, the position of these peaks grows with czcz, while their widths scales like Dz\sqrt{Dz}. cc and DD are analogous to `propagation' and `diffusion' coefficients. Their values depend on that of the friction coefficient μ\mu. At small μ\mu, we get c0cμc_0-c \propto \mu and DμβD \propto \mu^\beta, with β2.5\beta \sim 2.5, which means that the peaks get closer and wider as the disorder gets larger. This behavior is qualitatively what was predicted in a model where a stochastic relation between the stress components is assumed.Comment: 7 pages, 7 figures, accepted version to Europhys. Let

    Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface

    Get PDF
    Although the creation of spin polarization in various non-magnetic media via electrical spin injection from a ferromagnetic tunnel contact has been demonstrated, much of the basic behavior is heavily debated. It is reported here for semiconductor/Al2O3/ferromagnet tunnel structures based on Si or GaAs that local magnetostatic fields arising from interface roughness dramatically alter and even dominate the accumulation and dynamics of spins in the semiconductor. Spin precession in the inhomogeneous magnetic fields is shown to reduce the spin accumulation up to tenfold, and causes it to be inhomogeneous and non-collinear with the injector magnetization. The inverted Hanle effect serves as experimental signature. This interaction needs to be taken into account in the analysis of experimental data, particularly in extracting the spin lifetime and its variation with different parameters (temperature, doping concentration). It produces a broadening of the standard Hanle curve and thereby an apparent reduction of the spin lifetime. For heavily doped n-type Si at room temperature it is shown that the spin lifetime is larger than previously determined, and a new lower bound of 0.29 ns is obtained. The results are expected to be general and occur for spins near a magnetic interface not only in semiconductors but also in metals, organic and carbon-based materials including graphene, and in various spintronic device structures.Comment: Final version, with text restructured and appendices added (25 pages, 9 figures). To appear in Phys. Rev.

    The Double Pulsar Eclipses I: Phenomenology and Multi-frequency Analysis

    Get PDF
    The double pulsar PSR J0737-3039A/B displays short, 30 s eclipses that arise around conjunction when the radio waves emitted by pulsar A are absorbed as they propagate through the magnetosphere of its companion pulsar B. These eclipses offer a unique opportunity to probe directly the magnetospheric structure and the plasma properties of pulsar B. We have performed a comprehensive analysis of the eclipse phenomenology using multi-frequency radio observations obtained with the Green Bank Telescope. We have characterized the periodic flux modulations previously discovered at 820 MHz by McLaughlin et al., and investigated the radio frequency dependence of the duration and depth of the eclipses. Based on their weak radio frequency evolution, we conclude that the plasma in pulsar B's magnetosphere requires a large multiplicity factor (~ 10^5). We also found that, as expected, flux modulations are present at all radio frequencies in which eclipses can be detected. Their complex behavior is consistent with the confinement of the absorbing plasma in the dipolar magnetic field of pulsar B as suggested by Lyutikov & Thompson and such a geometric connection explains that the observed periodicity is harmonically related to pulsar B's spin frequency. We observe that the eclipses require a sharp transition region beyond which the plasma density drops off abruptly. Such a region defines a plasmasphere which would be well inside the magnetospheric boundary of an undisturbed pulsar. It is also two times smaller than the expected standoff radius calculated using the balance of the wind pressure from pulsar A and the nominally estimated magnetic pressure of pulsar B.Comment: 9 pages, 7 figures, 3 tables, ApJ in pres

    Pulsar Wind Nebulae in the SKA era

    Get PDF
    Neutron stars lose the bulk of their rotational energy in the form of a pulsar wind: an ultra-relativistic outflow of predominantly electrons and positrons. This pulsar wind significantly impacts the environment and possible binary companion of the neutron star, and studying the resultant pulsar wind nebulae is critical for understanding the formation of neutron stars and millisecond pulsars, the physics of the neutron star magnetosphere, the acceleration of leptons up to PeV energies, and how these particles impact the interstellar medium. With the SKA1 and the SKA2, it could be possible to study literally hundreds of PWNe in detail, critical for understanding the many open questions in the topics listed above.Comment: Comments: 10 pages, 3 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14

    Assessing the climate change impacts of biogenic carbon in buildings: a critical review of two main dynamic approaches

    Get PDF
    Wood is increasingly perceived as a renewable, sustainable building material. The carbon it contains, biogenic carbon, comes from biological processes; it is characterized by a rapid turnover in the global carbon cycle. Increasing the use of harvested wood products (HWP) from sustainable forest management could provide highly needed mitigation efforts and carbon removals. However, the combined climate change benefits of sequestering biogenic carbon, storing it in harvested wood products and substituting more emission-intensive materials are hard to quantify. Although different methodological choices and assumptions can lead to opposite conclusions, there is no consensus on the assessment of biogenic carbon in life cycle assessment (LCA). Since LCA is increasingly relied upon for decision and policy making, incorrect biogenic carbon assessment could lead to inefficient or counterproductive strategies, as well as missed opportunities. This article presents a critical review of biogenic carbon impact assessment methods, it compares two main approaches to include time considerations in LCA, and suggests one that seems better suited to assess the impacts of biogenic carbon in buildings
    corecore