4,954 research outputs found

    Electric Dipole Moments of Neutron-Odd Nuclei

    Full text link
    The electric dipole moments (EDMs) of neutron-odd nuclei with even protons are systematically evaluated. We first derive the relation between the EDM and the magnetic moment operators by making use of the core polarization scheme. This relation enables us to calculate the EDM of neutron-odd nuclei without any free parameters. From this calculation, one may find the best atomic system suitable for future EDM experiments.Comment: 4 page

    Simulations of slow positron production using a low energy electron accelerator

    Full text link
    Monte Carlo simulations of slow positron production via energetic electron interaction with a solid target have been performed. The aim of the simulations was to determine the expected slow positron beam intensity from a low energy, high current electron accelerator. By simulating (a) the fast positron production from a tantalum electron-positron converter and (b) the positron depth deposition profile in a tungsten moderator, the slow positron production probability per incident electron was estimated. Normalizing the calculated result to the measured slow positron yield at the present AIST LINAC the expected slow positron yield as a function of energy was determined. For an electron beam energy of 5 MeV (10 MeV) and current 240 μ\muA (30 μ\muA) production of a slow positron beam of intensity 5 ×\times 106^{6} s1^{-1} is predicted. The simulation also calculates the average energy deposited in the converter per electron, allowing an estimate of the beam heating at a given electron energy and current. For low energy, high-current operation the maximum obtainable positron beam intensity will be limited by this beam heating.Comment: 11 pages, 15 figures, submitted to Review of Scientific Instrument

    Heat capacity uncovers physics of a frustrated spin tube

    Get PDF
    We report on refined experimental results concerning the low-temperature specific heat of the frustrated spin tube material [(CuCl2tachH)3Cl]Cl2. This substance turns out to be an unusually perfect spin tube system which allows to study the physics of quasi-one dimensional antiferromagnetic structures in rather general terms. An analysis of the specific heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, at somewhat elevated temperatures the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat located around 2 K. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.Comment: 4+ pages, 6 figure

    How are Forbush decreases related to interplanetary magnetic field enhancements ?

    Full text link
    Aims. Forbush decrease (FD) is a transient decrease followed by a gradual recovery in the observed galactic cosmic ray intensity. We seek to understand the relationship between the FDs and near-Earth interplanetary magnetic field (IMF) enhancements associated with solar coronal mass ejections (CMEs). Methods. We use muon data at cutoff rigidities ranging from 14 to 24 GV from the GRAPES-3 tracking muon telescope to identify FD events. We select those FD events that have a reasonably clean profile, and magnitude > 0.25%. We use IMF data from ACE/WIND spacecrafts. We look for correlations between the FD profile and that of the one hour averaged IMF. We ask if the diffusion of high energy protons into the large scale magnetic field is the cause of the lag observed between the FD and the IMF. Results. The enhancement of the IMF associated with FDs occurs mainly in the shock-sheath region, and the turbulence level in the magnetic field is also enhanced in this region. The observed FD profiles look remarkably similar to the IMF enhancement profiles. The FDs typically lag the IMF enhancement by a few hours. The lag corresponds to the time taken by high energy protons to diffuse into the magnetic field enhancement via cross-field diffusion. Conclusions. Our findings show that high rigidity FDs associated with CMEs are caused primarily by the cumulative diffusion of protons across the magnetic field enhancement in the turbulent sheath region between the shock and the CME.Comment: accepted in A&

    Dynamical Structure Factor in Cu Benzoate and other spin-1/2 antiferromagnetic chains

    Full text link
    Recent experiments of the quasi-one-dimensional spin-1/2 antiferromagnet Copper Benzoate established the existence of a magnetic field induced gap. The observed neutron scattering intensity exhibits resolution limited peaks at both the antiferromagnetic wave number and at incommensurate wave numbers related to the applied magnetic field. We determine the ratio of spectral weights of these peaks within the framework of a low-energy effective field theory description of the problem.Comment: 5 pages, 3figure

    A two dimensional model for ferromagnetic martensites

    Full text link
    We consider a recently introduced 2-D square-to-rectangle martensite model that explains several unusual features of martensites to study ferromagnetic martensites. The strain order parameter is coupled to the magnetic order parameter through a 4-state clock model. Studies are carried out for several combinations of the ordering of the Curie temperatures of the austenite and martensite phases and, the martensite transformation temperature. We find that the orientation of the magnetic order which generally points along the short axis of the rectangular variant, changes as one crosses the twin or the martensite-austenite interface. The model shows the possibility of a subtle interplay between the growth of strain and magnetic order parameters as the temperature is decreased. In some cases, this leads to qualitatively different magnetization curves from those predicted by earlier mean field models. Further, we find that strain morphology can be substantially altered by the magnetic order. We have also studied the dynamic hysteresis behavior. The corresponding dissipation during the forward and reverse cycles has features similar to the Barkhausen's noise.Comment: 9 pages, 11 figure

    Photoemission study of TiO2/VO2 interfaces

    Full text link
    We have measured photoemission spectra of two kinds of TiO2_2-capped VO2_2 thin films, namely, that with rutile-type TiO2_2 (r-TiO2_2/VO2_2) and that with amorphous TiO2_2 (a-TiO2_2/VO2_2) capping layers. Below the Metal-insulator transition temperature of the VO2_2 thin films, 300\sim 300 K, metallic states were not observed for the interfaces with TiO2_2, in contrast with the interfaces between the band insulator SrTiO3_3 and the Mott insulator LaTiO3_3 in spite of the fact that both TiO2_2 and SrTiO3_3 are band insulators with d0d^0 electronic configurations and both VO2_2 and LaTiO3_3 are Mott insulators with d1d^1 electronic configurations. We discuss possible origins of this difference and suggest the importance of the polarity discontinuity of the interfaces. Stronger incoherent part was observed in r-TiO2_2/VO2_2 than in a-TiO2_2/VO2_2, suggesting Ti-V atomic diffusion due to the higher deposition temperature for r-TiO2_2/VO2_2.Comment: 5 pages, 6 figure
    corecore