2,772 research outputs found
Theoretical Analysis of STM Experiments at Rutile TiO_2 Surfaces
A first-principles atomic orbital-based electronic structure method is used
to investigate the low index surfaces of rutile Titanium Dioxide. The method is
relatively cheap in computational terms, making it attractive for the study of
oxide surfaces, many of which undergo large reconstructions, and may be
governed by the presence of Oxygen vacancy defects. Calculated surface charge
densities are presented for low-index surfaces of TiO, and the relation of
these results to experimental STM images is discussed. Atomic resolution images
at these surfaces tend to be produced at positive bias, probing states which
largely consist of unoccupied Ti 3 bands, with a small contribution from O
2. These experiments are particularly interesting since the O atoms tend to
sit up to 1 angstrom above the Ti atoms, so providing a play-off between
electronic and geometric structure in image formation.Comment: 9 pages, Revtex, 3 postscript figures, accepted by Surf. Scienc
Catalogue of 12CO(J=1-0) and 13CO(J=1-0) Molecular Clouds in the Carina Flare Supershell
We present a catalogue of 12CO(J=1-0) and 13CO(J=1-0) molecular clouds in the
spatio-velocity range of the Carina Flare supershell, GSH 287+04-17. The data
cover a region of ~66 square degrees and were taken with the NANTEN 4m
telescope, at spatial and velocity resolutions of 2.6' and 0.1 km/s.
Decomposition of the emission results in the identification of 156 12CO clouds
and 60 13CO clouds, for which we provide observational and physical parameters.
Previous work suggests the majority of the detected mass forms part of a
comoving molecular cloud complex that is physically associated with the
expanding shell. The cloud internal velocity dispersions, degree of
virialization and size-linewidth relations are found to be consistent with
those of other Galactic samples. However, the vertical distribution is heavily
skewed towards high-altitudes. The robust association of high-z molecular
clouds with a known supershell provides some observational backing for the
theory that expanding shells contribute to the support of a high-altitude
molecular layer.Comment: To be published in PASJ Vol. 60, No. 6. (Issued on December 25th
2008). 35 pages (including 13 pages of tables), 7 figures. Please note that
formatting problems with the journal macro result in loss of rightmost data
columns in some long tables. These will be fixed in the final published
issue. In the meantime, please contact the authors for missing dat
Multipole correlations of -orbital Hubbard model with spin-orbit coupling
We investigate the ground-state properties of a one-dimensional -orbital Hubbard model including an atomic spin-orbit coupling by using
numerical methods, such as Lanczos diagonalization and density-matrix
renormalization group. As the spin-orbit coupling increases, we find a
ground-state transition from a paramegnetic state to a ferromagnetic state. In
the ferromagnetic state, since the spin-orbit coupling mixes spin and orbital
states with complex number coefficients, an antiferro-orbital state with
complex orbitals appears. According to the appearance of the complex orbital
state, we observe an enhancement of octupole correlations.Comment: 3 pages, 3 figures, To appear in J. Phys. Soc. Jpn. Suppl.,
Proceedings of ICHE2010 (September 17-20, 2010, Hachioji, Japan
Molecular clouds towards RCW 49 and Westerlund 2; Evidence for cluster formation triggered by cloud-cloud collision
We have made CO(J=2-1) observations towards the HII region RCW 49 and its
ionizing source, the rich stellar cluster Westerlund 2 (hereafter Wd2), with
the NANTEN2 sub-mm telescope. These observations have revealed that two
molecular clouds in velocity ranges of -11 to +9 km/s and 11 to 21 km/s
respectively, show remarkably good spatial correlations with the Spitzer IRAC
mid-infrared image of RCW 49, as well a velocity structures indicative of
localized expansion around the bright central regions and stellar cluster. This
strongly argues that the two clouds are physically associated with RCW 49. We
obtain a new kinematic distance estimate to RCW 49 and Wd2 of 5.4^{+ 1.1}_{-
1.4} kpc, based on the mean velocity and velocity spread of the associated gas.
We argue that acceleration of the gas by stellar winds from Wd2 is insufficient
to explain the entire observed velocity dispersion of the molecular gas, and
suggest a scenario in which a collision between the two clouds ~4 Myrs ago may
have triggered the formation of the stellar cluster.Comment: A version with higher resolution figures is available from
http://www.a.phys.nagoya-u.ac.jp/~naoko/research/apjl2009/fur09_rev_highreso.pd
Superconductivity emerging near quantum critical point of valence transition
The nature of the quantum valence transition is studied in the
one-dimensional periodic Anderson model with Coulomb repulsion between f and
conduction electrons by the density-matrix renormalization group method. It is
found that the first-order valence transition emerges with the quantum critical
point and the crossover from the Kondo to the mixed-valence states is strongly
stabilized by quantum fluctuation and electron correlation. It is found that
the superconducting correlation is developed in the Kondo regime near the sharp
valence increase. The origin of the superconductivity is ascribed to the
development of the coherent motion of electrons with enhanced valence
fluctuation, which results in the enhancement of the charge velocity, but not
of the charge compressibility. Statements on the valence transition in
connection with Ce metal and Ce compounds are given.Comment: 9 pages, 4 figure
Magnetically Regulated Star Formation in 3D: The Case of Taurus Molecular Cloud Complex
We carry out three-dimensional MHD simulations of star formation in
turbulent, magnetized clouds, including ambipolar diffusion and feedback from
protostellar outflows. The calculations focus on relatively diffuse clouds
threaded by a strong magnetic field capable of resisting severe tangling by
turbulent motions and retarding global gravitational contraction in the
cross-field direction. They are motivated by observations of the Taurus
molecular cloud complex (and, to a lesser extent, Pipe Nebula), which shows an
ordered large-scale magnetic field, as well as elongated condensations that are
generally perpendicular to the large-scale field. We find that stars form in
earnest in such clouds when enough material has settled gravitationally along
the field lines that the mass-to-flux ratios of the condensations approach the
critical value. Only a small fraction (of order 1% or less) of the nearly
magnetically-critical, condensed material is turned into stars per local
free-fall time, however. The slow star formation takes place in condensations
that are moderately supersonic; it is regulated primarily by magnetic fields,
rather than turbulence. The quiescent condensations are surrounded by diffuse
halos that are much more turbulent, as observed in the Taurus complex. Strong
support for magnetic regulation of star formation in this complex comes from
the extremely slow conversion of the already condensed, relatively quiescent
CO gas into stars, at a rate two orders of magnitude below the maximum,
free-fall value. We analyze the properties of dense cores, including their mass
spectrum, which resembles the stellar initial mass function.Comment: submitted to Ap
High-pressure study on the superconducting pyrochlore oxide Cd2Re2O7
Superconducting and structural phase transitions in a pyrochlore oxide
Cd2Re2O7 are studied under high pressure by x-ray diffraction and electrical
resistivity measurements. A rich P-T phase diagram is obtained, which contains
at least two phases with the ideal and slightly distorted pyrochlore
structures. It is found that the transition between them is suppressed with
increasing pressure and finally disappears at a critical pressure Pc = 3.5 GPa.
Remarkable enhancements in the residual resistivity as well as the coefficient
A of the AT 2 term in the resistivity are found around the critical pressure.
Superconductivity is detected only for the phase with the structural
distortion. It is suggested that the charge fluctuations of Re ions play a
crucial role in determining the electronic properties of Cd2Re2O7.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure
In this paper we present the results of a systematic investigation of an
entire population of starless dust cores within a single molecular cloud.
Analysis of extinction data shows the cores to be dense objects characterized
by a narrow range of density. Analysis of C18O and NH3 molecular-line
observations reveals very narrow lines. The non-thermal velocity dispersions
measured in both these tracers are found to be subsonic for the large majority
of the cores and show no correlation with core mass (or size). Thermal pressure
is thus the dominate source of internal gas pressure and support for most of
the core population. The total internal gas pressures of the cores are found to
be roughly independent of core mass over the entire range of the core mass
function (CMF) indicating that the cores are in pressure equilibrium with an
external source of pressure. This external pressure is most likely provided by
the weight of the surrounding Pipe cloud within which the cores are embedded.
Most of the cores appear to be pressure confined, gravitationally unbound
entities whose nature, structure and future evolution are determined by only a
few physical factors which include self-gravity, the fundamental processes of
thermal physics and the simple requirement of pressure equilibrium with the
surrounding environment. The observed core properties likely constitute the
initial conditions for star formation in dense gas. The entire core population
is found to be characterized by a single critical Bonnor-Ebert mass. This mass
coincides with the characteristic mass of the Pipe CMF indicating that most
cores formed in the cloud are near critical stability. This suggests that the
mass function of cores (and the IMF) has its origin in the physical process of
thermal fragmentation in a pressurized medium.Comment: To appear in the Astrophysical Journa
Nuclear Wobbling Motion and Electromagnetic Transitions
The nuclear wobbling motion is studied from a microscopic viewpoint. It is
shown that the expressions not only of the excitation energy but also of the
electromagnetic transition rate in the microscopic RPA framework can be cast
into the corresponding forms of the macroscopic rotor model. Criteria to
identify the rotational band associated with the wobbling motion are given,
based on which examples of realistic calculations are investigated and some
theoretical predictions are presented.Comment: 39 pages, plain TeX, figures not included, available via conventional
mai
- …