1,404 research outputs found

    Vorwort

    Get PDF

    Buerger's disease manifesting nodular erythema with livedo reticularis

    Get PDF
    ArticleINTERNAL MEDICINE. 46(21):1815-1819(2007)journal articl

    Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

    Get PDF
    We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ∼ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ∼1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase

    Molecular dynamics of flows in the Knudsen regime

    Get PDF
    Novel technological applications often involve fluid flows in the Knudsen regime in which the mean free path is comparable to the system size. We use molecular dynamics simulations to study the transition between the dilute gas and the dense fluid regimes as the fluid density is increased.Comment: REVTeX, 15 pages, 4 EPS figures, to appear in Physica

    First record of chambered hexactinellid sponges from the Palaeozoic

    Get PDF
    p. 129-130Most chambered sponges (the polyphyletic group of "Sphinctozoa") are hypercalcified types and most of them probably belong to the Demospongia. "Spinctozoa" occur from the Cambrian to the Recent and are the most abundant sponges in Late Palaeozoic and Triassic reefs and shallow water limestones. Among hexactinellid sponges, chambered forms are very rare including taxa only from the Late Jurassic and the Late Triassic of Europe, Russia, Tadjikistan, Iran or China. There are five genera described Casearia Quenstedt, Caucasocoelia Boiko, Dracolychnos Wu & Xiao, Pseudo-verticillites Boiko and Innaecoelia Boiko, the latter of which is synomised with Casearia by most authors.S

    Dynamics of Viscoplastic Deformation in Amorphous Solids

    Full text link
    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these new state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition, and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure

    Dynamical brittle fractures of nanocrystalline silicon using large-scale electronic structure calculations

    Full text link
    A hybrid scheme between large-scale electronic structure calculations is developed and applied to nanocrystalline silicon with more than 105^5 atoms. Dynamical fracture processes are simulated under external loads in the [001] direction. We shows that the fracture propagates anisotropically on the (001) plane and reconstructed surfaces appear with asymmetric dimers. Step structures are formed in larger systems, which is understood as the beginning of a crossover between nanoscale and macroscale samples.Comment: 10 pages, 4 figure

    A Symmetry Property of Momentum Distribution Functions in the Nonequilibrium Steady State of Lattice Thermal Conduction

    Full text link
    We study a symmetry property of momentum distribution functions in the steady state of heat conduction. When the equation of motion is symmetric under change of signs for all dynamical variables, the distribution function is also symmetric. This symmetry can be broken by introduction of an asymmetric term in the interaction potential or the on-site potential, or employing the thermal walls as heat reservoirs. We numerically find differences of behavior of the models with and without the on-site potential.Comment: 13 pages. submitted to JPS
    corecore