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Abstract We study the formation process of an oxygen torus during the 12–15 November 2012
magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate
the local plasma mass density (𝜌L) and the local electron number density (neL) from the resonant frequencies
of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated
by M ∼ 𝜌L∕neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both
Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning
side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at
L∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at
∼1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere
already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection
electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped
within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside.
This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen
Probes observations. We conclude that the oxygen torus identified in this study favors the formation
scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during
the recovery phase.

1. Introduction

An oxygen torus is found in the deep inner magnetosphere as an enhancement of O+ ion density in a
limited range of L shell. It was first reported by Chappell [1982] who used the retarding ion mass
spectrometer (RIMS) instrument carried by the Dynamic Explorer (DE) 1 satellite. The DE 1/RIMS instrument
can measure thermal (0–45 eV) ion fluxes with mass and charge information [Chappell et al., 1981] and has
been used by subsequent studies to investigate characteristics of the oxygen torus. Horwitz et al. [1984,
1986] showed that the O+ density sometimes becomes comparable to or exceeds the H+ density at L = 3–4.
Roberts et al. [1987] revealed that the heavy ion density enhancement is observed generally close to the
plasmapause at all local times with higher occurrence frequency in the late evening and morning sectors.
Comfort et al. [1988] reported that the O+/H+ density ratio has a peak at L = 3–5 and is larger on the evening
side than on the morning side. Although the operation of the RIMS instrument was terminated in 1989,
Fraser et al. [2005] analyzed its archived data and reported the oxygen torus. Here is a caveat: “torus” is a
term originally given by Chappell [1982] and Horwitz et al. [1984] to indicate the possibility of azimuthal
revolution of the O+ density enhancement. There have, however, been no clear observational evidences of a
well-defined pattern in azimuth.

After the termination of the DE 1/RIMS operation, no plasma instruments have been able to directly
measure thermal O+ ion flux to identify the oxygen torus. Instead, an indirect method for detecting the
oxygen torus has been proposed. In this method, the resonant frequency of standing Alfvén waves (f ) and
the upper hybrid resonance band (fUHR) observed by satellites are used to estimate the plasma mass density
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(𝜌) and the electron number density (ne), respectively. Singer et al. [1981] derived the MHD wave equation in
an arbitrary magnetic field geometry in the following form:
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where s represents the distance along the magnetic field line; 𝜉 is the displacement of the magnetic field
line; h is a factor describing separation between two adjacent file lines, which becomes smaller with
distance from the equator; 𝜇0 is the vacuum permeability; and B is the magnitude of the magnetic field. The
distribution of 𝜌 along the field line is usually modeled by a power law:

𝜌(s) = 𝜌eq

( req

r

)𝛼

, (2)

where 𝜌eq is the equatorial plasma mass density, r is the geocentric distance to the field line at s, req is the
geocentric distance to the field line at the equator, and 𝛼 is the power law index. Then the MHD equation
can be solved numerically to derive 𝜌eq which sets the standing wave between the northern and southern
ionospheres. The upper hybrid resonance frequency can be written as
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, (3)

where e is the electron charge, 𝜖0 is the vacuum permittivity, and me is the electron mass. Using this
equation, we can estimate ne from fUHR. Once 𝜌 and ne are obtained, the average ion mass (M) can be
calculated by M = (𝜌 − neme)∕ni ∼ 𝜌∕ni ∼ 𝜌∕ne under the assumption of quasi-neutrality of plasma, where
ni is the ion number density. In 100% H+ plasma, we have M = 1 amu, whereas in 50% H+ and 50% O+

plasma, M is increased to 8.5 amu. Thus, we can infer the concentration of heavy ions from M and detect the
oxygen torus.

Takahashi et al. [2006] applied this indirect method to the magnetic field and plasma wave data obtained by
the Combined Release and Radiation Effects Satellite (CRRES) and found that M in the plasma trough has a
median value of 3.0 amu and depends on geomagnetic activity. Takahashi et al. [2008] also used the CRRES
data and reported an oxygen torus with M = 6–8 amu in the plasma trough (L = 4–5.5) interposed between
the plasmasphere and the plasma plume. Nosé et al. [2011] examined four events of the CRRES observations
and found the oxygen torus with M>7 amu at L = 4.5–6.5 in the vicinity of the plasmapause. Takahashi et al.
[2014] derived 𝜌eq from the Geotail satellite data by solving equations (1) and (2) and demonstrated that
the F10.7 dependence of 𝜌eq is stronger at L ∼7 than at L = 11. They proposed the oxygen torus around the
geosynchronous orbit as one of factors which contribute to the strong F10.7 dependence at lower L.

In both studies by Takahashi et al. [2008] and Nosé et al. [2011], the oxygen torus was observed during the
recovery phase of magnetic storms. The preference of the oxygen torus for the recovery phase has been also
noted by the DE 1/RIMS observations. Horwitz et al. [1984] found the oxygen torus during a sharp decrease
in geomagnetic activity. Roberts et al. [1987] showed that the occurrence frequency of the oxygen torus
was still fairly high during a low Kp case (Kp = 0–2+). We suppose that this feature is related to a formation
mechanism of the oxygen torus. In this study, therefore, we focus on the evolution process of an oxygen
torus during a magnetic storm that occurred in November 2012 by analyzing the magnetic field and plasma
wave data from the Van Allen Probes.

This paper is organized as follows. Section 2 describes the instrumentation and data set used in this study.
In section 3, we demonstrate measurements of the Van Allen Probes during the recovery phase of a
magnetic storm that occurred on 15 November 2012, in which an oxygen torus is identified. Section 4
repeats similar analysis for data before 15 November 2012 and examines the formation process of the
oxygen torus. In section 5 we discuss the possible mechanisms of oxygen torus formation and perform
numerical calculation of thermal O+ ion drift under a decrease of the convection electric field. Results of the
numerical calculation are compared with the Van Allen Probes observations. We also compare the oxygen
torus with the warm plasma cloak, which was reported by previous studies, in terms of their morphology.
Measurements of suprathermal ion fluxes during the appearance of the oxygen torus are then examined.
Section 6 provides the conclusions of this study.

NOSÉ ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1183
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Figure 1. Orbit of Probe A (red) during 0330–1030 UT on 15
November 2012 and orbit of Probe B (blue) during 0420–1120
UT on the same day in solar magnetic (SM) coordinates. Small
dots on the orbits indicate locations of probes at integer and
half past hours.

2. Instrumentation and Data Set
2.1. Van Allen Probes
The Van Allen Probes consists of two identical
spacecraft and were launched on 30 August
2012. They were placed in nearly the same
highly elliptical, low-inclination orbits having
a perigee of ∼600 km altitude, an apogee of
5.8 RE , and an inclination of 10◦. The spacecraft
spin at a rate of ∼5 rpm and their spin axes
point roughly sunward. The apogee is first
located near 0800 magnetic local time (MLT)
and precesses in local time westward at a rate
of ∼14 h/yr. The Van Allen Probes mission is
described in more detail by Mauk et al. [2013].

2.2. EMFISIS/MAG and Waves
We use the magnetic field and plasma wave
data obtained by the Electric and Magnetic
Field Instrument Suite and Integrated Science
(EMFISIS) instrumentation suite onboard the
Van Allen Probes. EMFISIS provides two types
of data sets: MAG and Waves. MAG consists of
the magnetic field vector measured by a triaxial
fluxgate magnetometer with a cadence of 64 Hz
and a resolution of 0.16 nT/2 nT in ±4096 nT/

±65536 nT range. Waves covers a wide frequency range of plasma waves. Wave signals in the frequency
range of 10 Hz to 12 kHz are provided as vector electromagnetic fields, while those in the higher-frequency
range of 10 kHz to 400 kHz are supplied with a single channel of the electric field. A more detailed
description of EMFISIS can be found in the work by Kletzing et al. [2013].

The MAG data used in this study are averaged over 1 s (i.e., a cadence of 1 Hz) and are expressed in mean
field-aligned (MFA) coordinates. A mean field is defined by a simple moving average of the magnetic field
vector with a time window of 30 s, and its direction is taken to be the parallel direction in MFA coordinates.
The radial direction is perpendicular to the mean field and points radially outward, and the azimuthal
component is directed eastward to complete the right-handed system. We subtract the mean field from
the observations to determine the magnetic field variations (ΔBparallel, ΔBradial, and ΔBazimuthal) which are
appropriate to examine ULF wave occurrence.

From the Waves measurements of plasma waves in the frequency range of 10–400 kHz, we search for the
upper hybrid resonance band to determine the electron number density at a local probe position (neL). The
determination of neL is made every 6 s with a semi-automated method, and is subjected to visual inspection
and manual correction.

3. Observations of Oxygen Torus: 15 November 2012 Event
3.1. Orbits of Van Allen Probes
In this section, we focus on an observation of Probe A during 0330–1030 UT on 15 November 2012 and
that of Probe B during 0420–1120 UT on the same day. Figure 1 illustrates these 7 h orbital segments of
Probe A (red) and Probe B (blue) in solar magnetic (SM) coordinates. Small dots on the orbits indicate
locations of probes at integer and half past hours. Both probes have almost the same trajectories starting
from postmidnight and ending at the noon meridian via the dawn sector. Probe B tracks Probe A with a
delay of approximately 50 min. In most of these intervals they are located below the geomagnetic equator.

3.2. Geomagnetic Conditions
Figure 2 shows the AL, Wp, and Dst indices for 11–16 November 2012. The Wp index reflects Pi2 wave power
at low latitude on the nightside and is useful for identifying substorm onset [Nosé et al., 2012]. The 7 h
intervals of observations by Probe A and Probe B that are used in the present study are indicated by red and

NOSÉ ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1184
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Figure 2. AL, Wp, and Dst indices for 11–16 November 2012. The 7 h
intervals of observations by Probe A and Probe B are indicated by red
and blue horizontal thick bars, respectively. Red and blue thin bars with
numbers are time intervals discussed in section 4.

blue horizontal thick bars, respectively.
(Red and blue thin bars with numbers
are time intervals discussed in later
section.) The observations are made
during the recovery phase of the geo-
magnetic storm, in which the minimum
value of the Dst index is −108 nT. The
AL and Wp indices show that there are
no major substorm activities during the
probes observations.

3.3. EMFISIS Observations of
ULF Waves
Figure 3a displays the EMFISIS
data obtained by Probe A during
0330–1030 UT on 15 November 2012.
The top three panels provide the
dynamic power spectra of magnetic
field perturbations in the ULF range
of 0–50 mHz in MFA coordinates
measured by EMFISIS/MAG. Figure 3a
(bottom) shows the single axis

frequency spectrogram of the electric field oscillation in the frequency range of 10–400 kHz measured
by EMFISIS/Waves. In the top three panels, we identify ULF wave activities throughout the time interval
with enhanced power after 0700 UT when the Probe A moves to the dayside. This is due to the enhanced

Figure 3. (a) EMFISIS data obtained by Probe A during 0330–1030 UT on 15 November 2012. (top three panels) The dynamic power spectra of magnetic field
perturbations in the ULF range of 0–50 mHz in MFA coordinates measured by EMFISIS/MAG. (bottom) The single-axis frequency spectrogram of the electric field
oscillation in the frequency range of 10–400 kHz measured by EMFISIS/Waves. (b) Same as Figure 3a but for Probe B during 0420–1120 UT on 15 November 2012.

NOSÉ ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1185
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Figure 4. (a) Observational results from Probe A. From top to bottom: Selected harmonic frequencies (fn), plasma mass density at a local probe position (𝜌L),
electron number density at a local probe position (neL), average ion mass (M) derived from 𝜌L and neL with the assumption of quasi-neutrality of plasma, and
moving average of M with a time window of 20 min (Mave). (b) Same as Figure 4a but for Probe B.

ionospheric conductivity on the dayside which creates effective reflection of the Alfvén waves and sets up a
geomagnetic field line resonance. The harmonic structure of the field line resonance is most clearly visible
in the azimuthal component. In Figure 3a (bottom), narrow banded upper hybrid resonance waves are
clearly found.

Figure 3b is the same as Figure 3a but for Probe B. The similar features of ULF waves are identified in the top
three panels. We also see a narrow band emission at the upper hybrid resonance frequency.

From the dynamic power spectrum of the azimuthal component, we select harmonic frequencies of the field
line resonance to calculate the plasma mass density. First, the following criteria are used to select frequen-
cies that have a local peak in wave power (fp): (1) P(fp)∕P(fp − Δf )> 1.05 and P(fp − Δf )∕P(fp − 2Δf )> 1.05,
(2) P(fp)∕P(fp + Δf )> 1.05 and P(fp + Δf )∕P(fp + 2Δf )> 1.05, and (3) P(fp)≥ 10−1.5 (nT2/Hz), where P(f )
is the wave power at frequency f and Δf is the frequency resolution in the power spectrum. Because
the power spectrum is calculated for data segments of 1024 data points, Δf is 0.98 mHz (1/1024 Hz).
Second, the selected fp is plotted over the dynamic power spectrum and is checked visually to discard
values that do not match the harmonic structure. Finally, the harmonic number (n) is decided for each fp.
In this step, we consider that Probe A should observe the odd mode harmonics more clearly than the even
mode harmonics because it was located off the equator (Figure 1). We also bear in mind that the third
harmonic waves are often seen apparently off the equator, according to previous studies [e.g., Takahashi
et al., 2010]. We expect that Probe B tends to observe weaker odd mode waves and stronger even mode
waves than Probe A, because Probe B flew closer to the geomagnetic equator. The electric field data

NOSÉ ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1186
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Figure 5. (a) The parameters neL and Mave as a function of dipole L observed in the inbound pass of Probe A. (b) Same as
Figure 5a but for Probe B.

[Wygant et al., 2013] are also checked because it is useful to find the fundamental mode near the equator
(not shown here). The selected harmonic frequencies are labeled fn and are given in the top three panels
of Figure 4a for Probe A and Figure 4b for Probe B. Colors represent the harmonic number from the
fundamental (n = 1) to the fifth harmonics (n = 5).

3.4. Identification of Oxygen Torus
We estimate the plasma mass density at a local probe position (𝜌L) from fn by numerically solving the MHD
equation (1). The magnetic field is represented by the Tsyganenko 1989c (T89c) model [Tsyganenko, 1989]
for Kp = 1; the first three values of the Kp index on 15 November 2012 are 1+, 1−, and 1−. The power law
index of the 𝜌 distribution in equation (2) is taken to be 𝛼 = 0.5. We take the ionospheric height of 200 km for
both hemispheres, where 𝜉 = 0. For each fn, we decide on 𝜌L which makes the field line resonance structure
possess n antinodes. The results of estimation are shown in Figures 4a (second panel) and 4b (second panel).
Different fn gives the generally same values of 𝜌L, indicating that the selection of fn and the estimation of 𝜌L

are appropriate.

Figures 4a (third panel) and 4b (third panel) display neL calculated from the upper hybrid resonance band
that are clearly identified in Figures 3a (bottom) and 3b (bottom). Probe A observes the plasmapause around
1000 UT at r ∼3.2 RE on the morning side (MLT ∼9.3 h), and Probe B traverses the plasmapause around
1020 UT at r ∼4.0 RE and MLT ∼ 8.4 h. This is due to expansion of the plasmasphere during the storm
recovery phase, which can be recognized more easily in later figures (Figures 5 and 6). On the nightside,
although some plasma depletion regions are noted (e.g., 0440–0530 UT, around 0600 UT for Probe A,
and 0400–0420 UT, 0610–0650 UT for Probe B), neL changes rather smoothly and no clear plasmapause
is detected. Such a smooth transition of neL from the plasmasphere to the plasma trough without a clear
signature of the plasmapause and its preference to quiet geomagnetic conditions have been reported by
Moldwin et al. [2002] and Tu et al. [2007].

The next panels of Figures 4a and 4b display M derived from 𝜌L and neL with the assumption of
quasi-neutrality of plasma. Calculation is made by using the data shown in the second and third panels.
We have a reasonable estimation of M ranging from 1 amu to 12 amu. Even if the harmonics are different,
the estimated values of M generally coincide with each other. In order to increase statistical significance,
we compute the moving average of M with a time window of 20 min. If no more than two values of M are
included in the 20 min window, no average is computed. The results (Mave) are demonstrated in Figures 4a
(bottom) and 4b (bottom). Both observations of Probe A and Probe B show that Mave is 1–2 amu in the
plasma trough. A subtle enhancement of Mave (∼3 amu) is noted around 0500 UT for Probe A. However, the
most distinct enhancements appear at 0930–1000 UT for Probe A and at 1000–1030 UT for Probe B when
both Probes are located around MLT = 8–9 h. Their peak values are 4.5–8 amu, which means the O+ concen-
tration to be 23–47% if the plasma is composed of only H+ and O+. These enhancements are identified just
outside of or very close to the plasmapause. This feature is consistent with that of the oxygen torus reported
by previous studies [Chappell, 1982; Horwitz et al., 1986; Takahashi et al., 2008; Nosé et al., 2011]. We cannot
investigate the presence of the oxygen torus in other MLT during this specific magnetic storm due to the
Van Allen Probes orbits, though the O+ density enhancements have been reported at local times other than
the morning side [e.g., Horwitz et al., 1984, 1986; Roberts et al., 1987].

NOSÉ ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1187
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Figure 6. The parameters neL and Mave as a function of dipole L observed by (left column) Probe A and (right column)
Probe B during time intervals 1–6 indicated in Figure 2.
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The same data of neL and Mave are plotted as a function of dipole L in Figure 5. Only inbound observations
are shown, because the oxygen torus is found on the morning side (MLT ∼ 8–9 h). We determine from
the Probe A observation (Figure 5a) that the plasmapause is located at L ∼ 3.2 and the oxygen torus is
distributed over L = 3.0–4.0. Probe B detects the plasmapause at L∼ 3.9 and the oxygen torus at L = 3.7–4.5
(Figure 5b). Roberts et al. [1987] introduced an empirical equation between the L shell of the O+ density peak
and the Kp index: L = −0.24 Kp + 4.39. If we substitute Kp = 1 in this equation, we obtain L = 4.15 for the O+

peak location, which is consistent with the Probe B observation.

4. Observations of Oxygen Torus Formation

We derive M on the morning side before 15 November 2012 to investigate the evolution of the oxygen torus.
The magnetic field data from Van Allen Probes are visually scanned for 12–14 November 2012 to find clear
ULF signatures. For both Probe A and Probe B, we find five orbital segments on the morning side, in which
clear harmonic structures appear in a dynamic power spectrum. The time intervals of these five orbital
segments are indicated in Figure 2 with red (Probe A) and blue (Probe B) horizontal thin bars labeled 1–5. We
also indicate with thin bars labeled 6 the time intervals examined in Figure 5, during which the oxygen torus
is identified. Intervals 1 and 2 are during the quiet period or sudden commencement. Interval 3 is the initial
phase of the magnetic storm. Intervals 4 and 5 are during the main phase and the early recovery phase of
the magnetic storm, respectively. The trajectories of Van Allen Probes during these five intervals are nearly
identical to the inbound path in the morning sector shown in Figure 1.

We perform an analysis similar to that used in the section 3 for the EMFISIS data during the five time
intervals. Figure 6 displays the results of estimation of neL and Mave as a function of dipole L for intervals 1–5
as well as interval 6; results for interval 6 are the same as those in Figure 5. The left column shows the results
of Probe A, and the right column shows those of Probe B. Before the magnetic storm starts (intervals 1 and
2), both probes stay inside the plasmasphere and measure 100% H+ plasma. In the initial phase (interval 3),
the plasmasphere starts to shrink and both probes encounter gradual decreases of neL over L = 4.5–5.8. The
plasma in the plasmasphere at L < 4.5 has Mave ∼1 amu, whereas that in the plasmapause or plasma trough
shows enhancement of Mave up to 4 amu. This indicates that heavy ions (He+ and O+) with thermal energy
are loaded in the magnetosphere already in the initial phase, although the Dst index is not fully decreased
yet. During the storm main phase (interval 4), a clear plasmapause is identified near L = 4.3 with Probe A and
near L = 4.1 with Probe B, resulting from shrinkage of the plasmasphere during the storm development.
Mave still remains at about 1 amu in the plasmasphere, but it is increased to 4–7 amu in the plasma trough. A
closer comparison of the two panels in interval 4 reveals that Mave becomes larger during the time interval
between the Probe A and Probe B observations, in particular, at L = 4–5. We consider that this is due to the
continuous loading of heavy ions to the plasma trough and that the heavy ions should be mostly O+ ions
because Mave is larger than 4 amu. In the early recovery phase (interval 5), Probe A detects the plasmapause
at L = 2.6. There are no ULF activities at L < 5 during this interval and no information about Mave is obtained.
However, Mave in the plasma trough at L = 5–5.8 is nearly constant at 4–5 amu, which is similar to that in
interval 4. We therefore suppose that such a large value of Mave prevails down to the plasmapause. Probe
B also detects ULF activity at only L = 4.4–5.8, where Mave is estimated to be 5–7 amu and shows a small
enhancement in comparison with the Probe A observation (i.e., 4–5 amu). We have the same supposition
that the plasma trough has a large Mave (∼4–7 amu) throughout, while the plasmasphere has Mave ∼1 amu.
Finally, in the late recovery phase (interval 6), we find the oxygen torus near the plasmapause.

5. Discussion
5.1. Generation Mechanisms of Oxygen Torus
Two scenarios have been proposed for the formation of the oxygen torus: (1) ionospheric electron heating
scenario and (2) geomagnetic mass spectrometer scenario [e.g., Roberts et al., 1987]. The first scenario
considers interactions between the ring current energetic ions and the plasmaspheric cold electrons during
the recovery phase because of the expansion of the plasmasphere. One of the possible interactions is
Coulomb collision as an energy transfer process from the ring current protons to the plasmaspheric cold
electrons [Cole, 1965]. Another possible interaction is Landau damping of ion cyclotron waves that are
generated by unstable ring current ions and consequent heating of the plasmaspheric electrons [Cornwall
et al., 1971]. In either interaction, the plasmaspheric cold electrons are energized, and the heat conduction
from the plasmaspheric electrons down to the underlying ionosphere becomes responsible for a rise of the
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temperature in the ionospheric ions. This results in an increase of the scale height of ionospheric plasma
and extraction of a large number of O+ ions into the high altitude. Then the oxygen torus is formed in the
limited L shell where the ring current and the plasmasphere interacted [Roberts et al., 1987, Figure 17].

In the second scenario, ionospheric ions are extracted from a region near the dayside polar cusp during the
initial or main phase of magnetic storms and are convected into the nightside polar cap region. Because
of the polar convective electric field, the ionospheric ions are subsequently transported into the magneto-
sphere or the plasma sheet by the E × B drift. The E × B drift velocity is the same for all ions, but heavier ions
have a smaller tailward velocity than lighter ions if escaping energies from the ionosphere are the same. This
makes mass spectrometer effect such that heavier ions fall in the near-Earth magnetosphere while lighter
ions are transported farther tailward. Because the extracted O+ ions reach the near-Earth magnetosphere in
a time scale of several hours [Cladis, 1986, 1988], an area with high concentration of the ionospheric O+ ions
is formed outside the plasmasphere during the storm main phase. Then the plasmapause expands during
the storm recovery phase and some parts of the ionospheric O+ ions in the near-Earth magnetosphere are
trapped within the plasmapause, resulting in formation of the oxygen torus [Roberts et al., 1987, Figure 16].

Analyzing simultaneous and conjugate measurements of the DE 1 and DE 2 satellites, Horwitz et al. [1986]
reported that O+ density enhancements in the plasmasphere are often closely coincident with ionospheric
electron temperature enhancements and concluded that the first scenario is plausible. The same conclusion
has been derived by Roberts et al. [1987], Comfort et al. [1988], and Horwitz et al. [1990]. However, we find
loading of thermal heavy ions in the whole plasma trough at L< 5.8 in the initial and main phases of the
magnetic storm on 13–14 November 2012 (intervals 3–5 in Figure 6). This observational result appears to
favor the second scenario rather than the first scenario. Moreover, the magnetic storm examined in the
present study started with a sudden commencement (Figure 1). In such magnetic storms, a large amount of
O+ ions are extracted from the cusp region when the solar wind dynamic pressure is enhanced [Moore et al.,
1999, 2001; Elliott et al., 2001; Kunori et al., 2007], which is also supportive of the second scenario.

5.2. Numerical Calculation of Thermal O+ Ion Trajectories
5.2.1. Temporal Evolution of O+ Ion Distribution During Storm Recovery
In the second-generation mechanism, it is considered that the ionospheric O+ ions prevailing in the plasma
trough are trapped in the expanding plasmasphere during the recovery phase to form the oxygen torus.
This process is examined here with numerical calculation. A dipole magnetic field and the Volland-Stern
convection electric field [Volland, 1973; Stern, 1975; Maynard and Chen, 1975] are assumed. The convection
field potential Φ is determined by

Φ = 0.045
(1 − 0.159 Kp + 0.0093 Kp2)3

r2 sin
(
𝜋

LT
12

)
, (4)

where r is a radial distance. To simulate recovery of a magnetic storm, the Kp index is changed as
Kp = −t∕6 + 3 (t = 0–12 h) and Kp = 1 (t > 12 h), where t is an elapsed time and t = 0–15 h. At t = 0 h, we
put equatorial mirroring thermal O+ ions only in the plasma trough at (X , Y) = (−8 to 8 RE , −8 to 8 RE) with
a grid spacing of 0.5 RE . This is because we observe heavy ions outside the plasmapause in the storm main
phase (interval 4). Thermal energies of the O+ ions are taken to be 15 eV, 50 eV, 100 eV, 300 eV, and 1000 eV.
We then calculate the trajectories of the O+ ions under the decreasing convection electric field. No O+ ions
are added during t >0 h, which reflects in a very simple manner a cessation or a decrease of the O+ supply
from the dayside polar cusp during the storm recovery phase. The results of the calculation are shown in
Figure 7. Each panel displays the positions of the O+ ions (small dots) and an open/closed separatrix for cold
ions (a thick curve) that is considered the plasmapause at t = 0, 3, 4.5, 6, 7.5, 9, 10.5, 12, and 15 h. Colors of
the small dots represent initial energies of the O+ ions (i.e., from 15 eV to 1000 eV) as indicated in the
legend. Most of O+ ions drift eastward because of their low energy. At t = 3–4.5 h, the O+ ions drape around
the plasmapause on the nightside, while they are also found in a wider range of r on the dayside. In the
morning sector, the O+ ions are distributed from the plasmapause up to r∼ 7–8 RE . At t = 6–9 h, the O+ ions
further drift eastward to the dayside in the vicinity of the plasmapause. As the Kp index gradually decreases,
the plasmapause correspondingly expands. Some of the O+ ions are then found inside the open/closed
separatrix, having been trapped within the plasmasphere. These processes create regions where the O+

ions are concentrated both outside and inside the plasmasphere. The regions extend over a radial width of
1–2 RE on the dawn and morning sides. At t = 12 h, the plasmapause has fully expanded. The O+ ions mostly
remain in a limited range of r within the plasmasphere. As time proceeds (t = 15 h), the trapped O+ ions in
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Figure 7. Results of numerical calculation of O+ ion drift during a decrease of the convection electric field. A dipole
magnetic field and the Volland-Stern convection electric field are assumed at t = 0 h, equatorial mirroring O+ ions with
energies of 15 eV, 50 eV, 100 eV, 300 eV, and 1000 eV are put only in the plasma trough at (X , Y) = (−8 to 8 RE , −8 to 8 RE )
with a grid spacing of 0.5 RE . The Kp index is changed as Kp = −t∕6 + 3 (t = 0–12 h) and Kp = 1 (t > 12 h). A thick curve
represents an open/closed separatrix, for cold ions, that is considered the plasmapause.

the plasmasphere corotate eastward with the Earth at r ∼ 4 – 6 RE . The present numerical calculation indi-

cates that O+ ions are not only trapped within the plasmasphere but also draped around the plasmapause

on the dawn and morning sides during the recovery phase, forming an oxygen torus that exists from just

inside the plasmasphere and protrudes outward from the plasmapause.

5.2.2. Comparison With Van Allen Probes Observations

In order to compare with the Van Allen Probes observations, we examinethe O+ ion density on the morning

side as a function of radial distance by using the results of the numerical calculation. The O+ density here is

defined by the number of O+ ions divided by an area, each of which covers 8–11 h of local time by 0.5 RE of r.

Figure 8 shows results for t = 0, 3, 4.5, 6, 7.5, 9, 10.5, and 12 h (i.e., during the plasmapause expansion), which

are differentiated by colors as specified. Stars represent the plasmapause positions averaged over 8–11 h

in local time. The O+ density in the plasma trough is rather uniform at t = 0 h, as is expected for the initial

condition. The O+ density at t = 3 h is generally lower, likely because the ions have drifted into the dayside.

In the following intervals at t = 4.5–6 h, the density at r = 3.5–6 RE reverts to or becomes larger than the
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Figure 8. O+ ion density on the morning side as a function of radial
distance at t = 0, 3, 4.5, 6, 7.5, 9, 10.5, and 12 h (i.e., during the
plasmapause expansion). The O+ density is defined by the number of
O+ ions divided by an area, each of which covers 8–11 h of local time
by 0.5 RE of r. Stars represent the plasmapause positions averaged over
8–11 h in local time.

initial values. We ascribe these density
changes to ions that drift eastward
from the nightside. These simulation
results are consistent with the Van
Allen Probes observations in interval 5,
where the small enhancement of Mave

from 4–5 amu to 5–7 amu is detected
at L = 5–5.8 during the time interval
between the Probe A and Probe B
measurements (Figure 6).

At t=7.5 h, a clear peak occurs in the O+

density at r = 4.5–5 RE with a peak value
about 1.5 times that of the previous val-
ues. The density peak is located near
the plasmapause. This is because ions
originating from the nightside corotate

eastward around the plasmapause and have approximately the same trajectories on the morning side, as
shown in Figure 7. This simulation result agrees well with the Probe A observation at interval 6, where Mave

shows a peak of ∼8 amu near the plasmapause (Figure 6). The density peak moves inward at t=9 h, while
the plasmapause expands to r = 4.9 RE . This puts the O+ density peak within the plasmasphere where cold
and dense H+ ions are expected. We suppose that this O+ density peak is not distinctly identified from the
Van Allen Probes observations of Mave, because the dense plasmaspheric H+ ions make Mave values smaller.
Outside the plasmasphere (r>5 RE), the O+ density becomes lower than that at t=7.5 h. Thus, we expect
that Mave may show a broad peak around the plasmapause with a value lower than previously observed by
Probe A at interval 6. The above supposition appears to be consistent with the Probe B observation of Mave

in interval 6 where the plasmapause is located at L∼ 3.9 and the oxygen torus is distributed over L = 3.7–4.5
with the peak value of ∼4 amu (Figure 6).

Near the end of the plasmapause expansion at t = 10.5–12 h, the O+ density exhibits a distinct peak at
r = 4–4.5 RE located well within the plasmasphere. Similarly, we speculate that the density peak is not
distinctly visible in Mave because of the dense plasmaspheric H+ ions, although no observations of Mave are
made after interval 6 in the present study.
5.2.3. Validity of Initial Parameters of O+ Ions
In the numerical calculation we consider O+ ions with a pitch angle (𝛼pitch) of 90◦ and thermal energies of
15 eV, 50 eV, 100 eV, 300 eV, and 1000 eV, at t = 0 h (i.e., at the beginning of the storm recovery phase). Here
we discuss whether these initial parameters of the O+ ions are appropriate.

Calculating the guiding center motion of ions, Cladis [1986] showed that O+ ions starting near the dayside
polar cusp with an energy of ∼12 eV arrive in the nightside magnetosphere at r = 8 to 15 RE with final
energies of 400 eV to a few keV. The transit time of the O+ ions from the dayside polar cusp to the magneto-
sphere was found to be 1–2 h, which was also reported by Cladis and Francis [1992]. A thorough examination
about destination of outflowing ionospheric O+ ions was performed by Ebihara et al. [2006]. They calculated
the trajectories of O+ ions that are launched with energies of <209 eV from the polar ionosphere covering
50◦–90◦ of magnetic latitude and the entire MLT. It was found that the ring current at L= 5 is the most
common destination of O+ ions launched from the polar region (>70◦ magnetic latitude). The O+ ion with
an initial energy of 14 eV arrives at L= 5 during a transit time of 2.8 h. The simulated ion flux of O+ ions
at L= 5 has multicomponents such as thermal (1 eV to ∼100 eV), suprathermal (∼100 eV to 10 keV), and
energetic (10–70 keV), with the prevalence of the thermal component [Ebihara et al., 2006, Figure 8].
Therefore, we consider that the initial energies of O+ ions used in the present numerical calculation are quite
reasonable. The transit time of O+ ions reported by the previous studies is a few hours, which is shorter
than the time scale of the storm main phase, implying that thermal O+ ions have been supplied from the
ionosphere into the plasma trough before the recovery phase begins. We also consider that it is reasonable
to place the thermal O+ ions in the plasma trough at the beginning of the recovery phase.

It is expected that thermal O+ ions are energized by the drift-betatron acceleration when they drift inward
from the near-Earth plasma sheet to the inner magnetosphere under the influence of the convective electric
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field. This creates a pitch angle distribution of O+ ions with a peak flux around 𝛼pitch = 90◦ (i.e., pancake
distribution). Thus, it is not unrealistic to consider only equatorial mirroring O+ ions (𝛼pitch = 90◦) in the
numerical calculation, although in the actual magnetosphere a smaller amount of O+ ions having velocity in
the direction parallel to the magnetic field (𝛼pitch ≠ 90◦) would be present.

5.3. Comparison Between Oxygen Torus and Warm Plasma Cloak
Chappell et al. [2008] shed new light on a plasma population with energies of 10 eV–3 keV in the inner
magnetosphere, compiling satellite measurements of low-energy ions over the past 30 years and
conducting a statistical analysis of the thermal ion fluxes at <400 eV measured by the Polar satellite.
This low-energy plasma population was called the “warm plasma cloak,” because it was draped over the
nightside region of the plasmasphere and spread out to higher L shells in the morning and early afternoon
sectors. In order to examine the source and evolution of warm plasma cloak ions, Chappell et al. [2008]
calculated the trajectories of polar wind ions in a three-dimensional steady state magnetosphere expressed
by the T89c magnetic field model and the Volland-Stern electric field model. All ions that form the warm
plasma cloak were found to have a nightside equatorial crossing distance from 8 to 45 RE geocentric and
never exceed about 3 keV in energy. From recent observations by the Time History of Events and Macroscale
Interactions during Substorms (THEMIS) spacecraft, Lee and Angelopoulos [2014] identified the warm plasma
cloak wrapping around the dawnside with temperatures from ∼10 eV (H+), tens of eV (He+), to hundreds of
eV (O+). We note that the morphology and location of the oxygen torus shown in Figure 7 are nearly identi-
cal to those of the warm plasma cloak discussed by Chappell et al. [2008] and Lee and Angelopoulos [2014]. In
our calculation, however, the O+ density enhancement can be created just inside the plasmapause because
of a temporal change in the convection electric field, whereas Chappell et al. [2008] argued that the warm
plasma cloak is distributed only outside the plasmapause.

The enhancement of O+ density in a limited range of L shell has been referred to as the oxygen torus,
which implies revolution symmetry. However, the results of the present numerical calculation (Figure 7)
and schematic figures of the warm plasma cloak [Chappell et al., 2008, Figures 3, 15, and 16] suggest a
crescent-shaped torus or a pinched torus that is centered around the dawn or midmorning sectors and
spans the sectors from premidnight to early afternoon. The oxygen-pinched torus can explain the high-
occurrence frequency (≥70%) of the O+ enhancement in the late evening and dawn regions (20–24 MLT and
05–09 MLT) reported by Roberts et al. [1987].

5.4. ECT-HOPE Observations
The Van Allen Probes carry the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers which are
one of the three pairs of instruments of the Energetic Particle, Composition, and Thermal Plasma (ECT) suite.
The HOPE instruments are designed to measure the in situ ion fluxes over 4𝜋 sr with the energy range from
1 eV to 50 keV and with mass and charge state information [Funsten et al., 2013]. It is of great interest to
examine what the HOPE instruments observed while the oxygen torus was identified in the recovery phase
of the November 2012 storm (interval 6).

For an easier comparison with the HOPE data, we again demonstrate neL and Mave as a function of dipole
L during interval 6 in Figure 9a (Probe A) and Figure 9b (Probe B), which are identical to Figure 5. The plasma-
pause is identified at L=3.2 in Figure 9a and at L=3.9 in Figure 9b as indicated by vertical dashed lines.
We calculated HOPE ion moments over the energy range of 30 eV–1 keV, where the lower energy limit of
30 eV is determined to avoid possible errors from spacecraft charging effects and the upper energy limit of
1 keV is determined to exclude contribution from energetic ring current ions. It is known that the computed
densities of H+, He+, and O+ reflect only a portion of cold plasma density, that is, only the population at
>30 eV. We therefore refer to the computed density as partial density. In Figures 9c and 9d, we display the
partial densities of H+ (red, npH+ ), He+ (yellow, npHe+ ), and O+ (green, npO+ ) as a function of dipole L for Probe
A and Probe B, respectively. Furthermore, we indicate the sum of these partial densities (npH++npHe++npO+ )
with a black line. Vertical dashed lines represent the locations of the plasmapause indicated in Figures 9a
and 9b. The sum of the partial densities in the plasma trough is 0.5–1 cm−3 as shown in Figures 9c and 9d,
which is significantly lower than the ion densities of 20–200 cm−3 inferred from neL (Figures 9a and 9b)
by assuming the quasi-neutrality of plasma. This suggests that ions with energies lower than 30 eV
predominantly contribute to the ion density. In the plasmasphere, the discrepancy between the sum of the
partial densities (0.002–2 cm−3) and the ion density inferred from neL (500–2000 cm−3) becomes even larger,
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Figure 9. (a) The parameters neL (black) and Mave (red) as a function of dipole L observed by Probe A in interval 6. (b)
Same as Figure 9a but for Probe B. (c) Partial densities of H+ (red), He+ (yellow), and O+ (green) measured by the HOPE
instrument as a function of dipole L for Probe A in interval 6. The partial densities are calculated over the energy range
of 30 eV–1 keV. The sum of these partial densities is shown with a black line. (d) Same as Figure 9c but for Probe B. (e)
Partial density ratio of heavy ions (He+ and O+) relative to H+ as a function of dipole L for Probe A. The ratio in the plas-
masphere is plotted with a gray line, because of the small and unrealistic value of the H+ partial density. (f ) Same as
Figure 9e but for Probe B.

because ions with energies of <30 eV occur to a greater extent in the plasmasphere than in the plasma
trough [Goldstein et al., 2014].

In spite of such limitation of the partial densities computed over 30 eV–1 keV, they may still provide some
insights about ion composition. Figure 9c shows that npO+ predominantly contributes to the sum of the
partial densities. The partial densities in the plasma trough are almost constant or increase gradually as the
probe moves inward down to the plasmapause. A closer inspection reveals distinct enhancements of npO+

and npHe+ immediately outside the plasmapause (L = 3.2–3.4) where no such enhancements are identified
in npH+ . In the plasmasphere, all of the partial densities fall to <0.1 cm−3; we refrain from discussing the ion
composition with the possibly uncertain data. Figure 9d shows the similar signatures of the ion composi-
tion in the plasma trough (L > 3.9). There are also enhancements in npO+ and npHe+ outside the plasmapause
(L = 3.9–4.2). In the plasmasphere at L = 3–3.9, Probe B observed the partial densities of 0.02–1.5 cm−3,
which are larger than the plasmaspheric partial densities observed by Probe A (Figure 9c), in particular, for
O+ ions. This may have occurred because plasma that resided in the plasma trough are trapped inside the
plasmasphere during the expansion of the plasmapause, as shown in Figure 7.

In order to confirm the density enhancements of O+ and He+ relative to H+ just outside the plasmapause,
we calculate a ratio of the partial densities such as (npHe+ +npO+ )∕npH+ ; the results are shown in Figure 9e
(Probe A) and Figure 9f (Probe B). The ratio in the plasmasphere is plotted with a gray line and will not be
discussed further, because of the very small and unrealistic values of npH+ . We note that the ratio of the
partial density is enhanced near the plasmapause at L = 3.2–3.4 in Figure 9e and at L = 3.9–4.2 in Figure 9f.
It is, however, difficult to quantitatively compare these enhancements of the partial density ratio (Figures 9e
and 9f) with the enhancements of Mave (Figures 9a and 9b), because the partial densities are calculated
over 30 eV–1 keV that is out of the energy range for cold ions contributing to Mave. Nevertheless, it is sup-
posed that the enhancements of the partial density ratio may have some connection with the oxygen torus
in regard to their characteristics that they are located outside the plasmapause and limited in a narrow
L range.
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6. Conclusions

We have identified the oxygen torus using the magnetic field and plasma wave data obtained by the Van
Allen Probes during the 12–15 November 2012 magnetic storm and have examined its formation process.
Both Probe A and Probe B observe the oxygen torus on the morning side (MLT ∼ 8–10 h) at L = 3.0–4.0
and L = 3.7–4.5 during the storm recovery phase. The average plasma mass in the torus is estimated to be
4.5–8 amu, which indicates that the O+ concentration is 23–47% if the plasma is composed of only H+ and
O+. The plasmapause is found at L ∼ 3.2 and 3.9 by Probe A and Probe B, respectively. Thus, the oxygen torus
is located near the plasmapause and extends over both the plasmasphere and the plasma trough.

We perform similar analysis for data obtained during the quiet period, the initial phase, and the main phase.
During the quiet period, the average plasma mass is near 1 amu in the plasmasphere. In the following
periods, the average plasma mass is 4–7 amu throughout the plasma trough and remains at ∼1 amu in the
plasmasphere. These results imply that ionospheric O+ ions are supplied into the inner magnetosphere
already in the initial phase of the magnetic storm, though the Dst index is not yet fully decreased. Previous
studies reported that a large amount of O+ ions are extracted from the cusp region when the solar wind
dynamic pressure is enhanced and they contribute to the plasma in the near-Earth plasma sheet or the ring
current region. The 12–15 November 2012 magnetic storm initiated with a sudden commencement and
supports the above implication.

Numerical calculation is performed to investigate whether the thermal O+ ions distributed in the plasma
trough form the oxygen torus during the decrease of the convection electric field. It is found that some of
the O+ ions are trapped within the expanded plasmasphere, while some of them drift around the plasma-
pause on the dawnside. The numerical results demonstrate how the oxygen torus spreads around the
plasmapause and are consistent with the Van Allen Probes observations. The oxygen torus identified in
this study favors the formation scenario of the geomagnetic mass spectrometer and the O+ drift during
the recovery phase (scenario 2 in section 5.1). We do not, however, rule out the other formation scenario
due to ionospheric electron heating (scenario 1 in section 5.1). If magnetic storms start without a sudden
commencement or if the oxygen torus is confined within the plasmasphere as shown by Horwitz et al.
[1986], scenario 1 may be more plausible.

The present numerical calculations and previous studies reporting on the warm plasma cloak [Chappell et al.,
2008; Lee and Angelopoulos, 2014] suggest that a crescent-shaped torus or a pinched torus centered around
the dawnside better describes the longitudinal extent of the O+ density enhancement.
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Erratum

In the originally published version of this article, Figures 5, 7, and 9 were reproduced incorrectly in the pdf. This error has been
corrected, and this version may be considered the authoritative version of record.
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